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Abstract

Quantum information processing is the emerging field that defines and realizes computing
devices that make use of quantum mechanical principles, like the superposition principle, en-
tanglement, and interference. Until recently the common notion of computing was based on
classical mechanics, and did not take into account all the possibilities that physically-realizable
computing devices offer in principle. The field gained momentum after Peter Shor developed an
efficient algorithm for factoring numbers, demonstrating the potential computing powers that
quantum computing devices can unleash.

In this review we study the information counterpart of computing. It was realized early on
by Holevo, that quantum bits, the quantum mechanical counterpart of classical bits, cannot be
used for efficient transformation of information, in the sense that arbitrary k-bit messages can
not be compressed into messages of k − 1 qubits.

The abstract form of the distributed computing setting is called communication complexity.
It studies the amount of information, in terms of bits or in our case qubits, that two spatially
separated computing devices need to exchange in order to perform some computational task.
Surprisingly, quantum mechanics can be used to obtain dramatic advantages for such tasks.

We review the area of quantum communication complexity, and show how it connects the
foundational physics questions regarding non-locality with those of communication complexity
studied in theoretical computer science. The first examples exhibiting the advantage of the use
of qubits in distributed information-processing tasks were based on non-locality tests. However,
by now the field has produced strong and interesting quantum protocols and algorithms of its
own that demonstrate that entanglement, although it cannot be used to replace communication,
can be used to reduce the communication exponentially. In turn, these new advances yield a
new outlook on the foundations of physics, and could even yield new proposals for experiments
that test the foundations of physics.
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1 Introduction

1.1 Background

During the last decades of the twentieth century it was realized that information processing at
the quantum level could offer tremendous advantages over conventional “classical” information
processing. Quantum information admits extremely efficient algorithms, such as Shor’s factoring
algorithm [Shor(1997)], and qualitatively superior cryptographic protocols, such as the BB84 key
distribution protocol [Bennett and Brassard(1984)]. Many other works contributed to put this
field on solid foundations. Quantum error-correcting codes and fault-tolerant quantum computa-
tion showed that these beautiful ideas could in principle be realized experimentally. These codes,
combined with Holevo’s Theorem, Schumacher compression, and entanglement distillation (which
are analogs of Shannon’s noiseless coding theorem) gave us the foundations of an information the-
ory pertaining to quantum systems in terms of quantum bits, or qubits, and entanglement that
is measured (in the bipartite case) in entanglement bits, or ebits. These discoveries generated
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huge excitement. By now quantum information has become a well-established field, and there are
many reviews and textbooks to which we refer the reader for background information. See for
example [Nielsen and Chuang(2000)].

In view of the advantages that quantum information offers for computation and cryptography,
it is natural to enquire whether quantum information is also a superior medium for efficient com-
munication. In this article we will review progress on this specific question, and its relation to the
problem of quantum non-locality which has fascinated physicists for decades.

On the face of it, there are important reasons for doubting that quantum information provides
such a communication efficiency advantage. Many years before the “quantum information” disci-
pline took hold on a large scale, Holevo [Holevo(1973)] proved an important theorem about the
classical information capacity of quantum channels. Holevo’s Theorem—as it is now called—states
that, for any classical message, the cost of transmitting it from one party (Alice) to another party
(Bob) in terms of quantum bits (qubits) is the same as the cost of transmitting it in terms of classical
bits. If the task requires k bits on average, then it also requires k qubits on average. The latter con-
sequence of Holevo’s Theorem can be proven quite simply using a different approach [Nayak(1999)],
and this proof is reproduced in Appendix A. Thus one would naively expect that quantum infor-
mation cannot provide a communication efficiency advantage. This intuition turns out to be wrong.
Tremendous communication savings are possible with the use of quantum information, as explained
in the next section.

1.2 Communication complexity

To understand why quantum information can provide a communication advantage without contra-
dicting Holevo’s Theorem, it is necessary to consider more precisely the various scenarios that can
be associated with “communication”.

The simplest scenario, corresponding to the case covered by Holevo’s Theorem, is illustrated
in Fig. 1. There are two parties that we refer to as Alice and Bob. Alice has an n-bit string x

&%
'$
Alice

x ∈ {0, 1}n

?

&%
'$

Bob

x
?

-

Input:

Output:

communication

Figure 1: The basic communication scenario: Alice receives an n-bit string x as input and sends
one message to Bob, who must output x. For this task, a quantum message is no more efficient
than a classical message.

that she would like to convey to Bob by sending one message. Here it is indeed true, by Holevo’s
Theorem [Holevo(1973)], that quantum messages are no more efficient than classical messages.
Alice must send n qubits to accomplish this specific task.

A variant of the communication scenario is where Bob’s goal is not to determine Alice’s data x,
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but to determine some information that is a function of x in a way that may depend on other
data y that resides with Bob (while y is unknown to Alice). Such a scenario could occur when Alice
and Bob each begin with n-bit strings, x and y, respectively (Alice knows x but not y and Bob
knows y but not x), and the goal is for Bob to determine the value of some function f(x, y) (where
f is known to both parties). An example where such a scenario could arise is where Alice and Bob
are interested in scheduling an appointment. Alice’s schedule could be represented by x and Bob’s
by y: if there are n time-slots, then we can set the ith bit of x to 1 if Alice is available in time-slot i,
and similarly for y. How much communication is required for Bob to find a time when they are
both available (i.e., an i such that xi = yi = 1)? We shall see that, for this communication scenario,
quantum information enables Alice and Bob to accomplish the task with less (asymptotically less
in the number of time-slots) qubit communication than would be required by any protocol that is
restricted to classical bit communication.

This kind of scenario, illustrated in Fig. 2 (for general functions or relations f on {0, 1}n ×
{0, 1}n) is known as communication complexity. It has been extensively studied in the classical

&%
'$
Alice

x ∈ {0, 1}n

?

&%
'$

Bob

y ∈ {0, 1}n

f(x, y)

?

?

-
�

-

communication

Inputs:

Output:

Figure 2: The basic communication complexity scenario: Alice and Bob receive n-bit strings, x
and y respectively, as input and their goal to compute some function of these values f(x, y), as
Bob’s output. There are tasks of this form where communication in terms of quantum messages
is much more efficient than communication in terms of classical messages. The number of qubits
can be exponentially smaller than the number of bits. Note that in this framework we do not take
into account the time and other resources that Alice and Bob spend locally (although in practice
it turns out that their local computations are almost always efficient).

case. Indeed, whereas the trivial solution to this problem is for Alice to send Bob her input x,
and for Bob to compute f(x, y), it is often possible for Bob to compute f with much less than n
bits of classical communication. These savings in classical communication are very interesting both
from a practical and a conceptual point of view. Section 3 outlines several of the key results in the
area, and we refer the reader to the textbooks [Kushilevitz and Nisan(1997), Hromkovič(1997)] for
further information.

When Alice and Bob can communicate qubits, further reductions in the amount of communi-
cation are possible, sometimes even exponential reductions. This remarkable situation is clearly
worthy of further study. It is one of the main subjects covered by the present review, and we will
see many examples later.
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1.3 Quantum non-locality

Long before the work on quantum communication complexity mentioned in the previous section,
physicists investigating the foundations of quantum mechanics studied the scenario where local mea-
surements are carried out on two entangled particles. Such entangled states can (at least in princi-
ple) be easily produced by having the particles interact together for some time, and then sending the
particles away to far-off locations. Local measurements are then carried out on the particles. This
scenario was first studied by Einstein, Podolsky, and Rosen [Einstein et al.(1935)Einstein, Podolsky, and Rosen]
and immediately afterwards by Schrödinger [Schrödinger(1935), Schrödinger(1936)] (who coined the
word entanglement). In these works it was realized that the results of the local measurements would
exhibit very interesting correlations. For instance, for some pairs of the measurements, the results
may be always the same; for other pairs of measurements, the results may be always opposite, etc.

Nevertheless, one can easily show—this follows immediately from the structure of quantum
mechanics—that the parties carrying out the measurements cannot use the entangled particles to
communicate to each other. More precisely, if two physically separated parties, Alice and Bob,
initially possess entangled particles and then Alice is given an arbitrary bit x, there is no way
for Alice to manipulate her particles in order to convey any information about x to Bob when he
performs measurements on his particles.

Given that these correlations cannot be used for communication, one would naively expect that
if a (quantum or classical) model can reproduce these correlations, then it is not necessary for
that model to use communication. This is indeed the case in the quantum scenario where, having
established the entanglement through some interaction in the past, no communication is needed
at the time of the measurement. But if one wants to reproduce these correlations in a purely
classical model, then classical communication between the parties is required at the moment of the
measurements! This situation is even more surprising if the particles are widely separated from
each other and the measurements take place during a very short time interval, so short that the
two measurement events are space-like separated. In this case the communication would have to
occur faster than the speed of light!

This remarkable feature of quantum mechanics was discovered by Bell [Bell(1965)], and is
now known as “quantum non-locality”. It has been the subject of much further theoretical and
experimental study since. Indeed it is one of the most surprising and counter-intuitive features
of quantum mechanics. Bell’s Theorem shows that Einstein’s program of trying to rationalize
quantum mechanics by reducing it to classical mechanics is futile and doomed to failure, as it
cannot be done without giving up another cornerstone of twentieth century physics (discovered by
Einstein himself), namely the fact that information cannot travel faster than the speed of light.
More recently, another reason why such a reduction is doomed emerged through the study of
quantum information. Namely we expect any such classical description of quantum mechanics to
be exponentially inefficient, i.e., to use exponentially more resources than the quantum theory. We
will discuss quantum non-locality extensively in the present review, focusing on its connection to
communication complexity.

1.4 Unity of quantum communication complexity and quantum non-locality

The reason why in this review we deal with quantum communication complexity and quantum
non-locality together is that these two topics are intimately related. Indeed they can be formulated
in a unified way, and furthermore many questions can be mapped from one topic to the other.
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In fact, during the past dozen years an intense cross-fertilization has occurred between these two
fields, which has considerably enriched both of them.

To see the unity between the two subjects, recall that in both cases the parties, Alice and
Bob, are given some inputs, x and y. In one case these inputs correspond to the arguments of the
function that must be computed. In the other case these inputs correspond to a description of the
measurements that must be carried out on the particles (the “measurement settings”). And in both
cases Alice and Bob must provide an output, a and b. In communication complexity we require
that b = f(x, y) and a is irrelevant; in non-locality we are interested in the correlations between a,
b and x, y (for instance we request that a = b when x and y have certain values and that a 6= b
when x and y have some other values). We can unify these descriptions by saying that the aim in
both cases is to produce a joint probability distribution

P (a, b|x, y)

of the outputs given the inputs, such that P (a, b|x, y) has certain desirable properties.

1.5 Resources

In both communication and non-locality, the basic question one wants to answer is: what is the
minimum amount of resources necessary to reproduce the distribution P (a, b|x, y), and how does
this amount change when one changes the model, i.e., when one changes the type of resource that
can be used. There are in fact many different types of resources that can be compared, and we now
briefly review them. We will come back to them in more detail in the body of the review.

• Quantum communication. The parties are allowed to send each other quantum states. One
quantifies the amount of communication by the number of qubits sent.

• Classical communication. The parties are allowed to send each other classical communication.
One quantifies the amount of communication by the number of bits sent.

• Entanglement. The parties share entangled states. One quantifies the amount of entan-
glement by the number of qubits that the state locally consists of. For example we fre-
quently use maximally entangled states of 2 qubits, called ebits (also known as EPR pairs
after [Einstein et al.(1935)Einstein, Podolsky, and Rosen]), 1√

2
(|0〉|0〉 + |1〉|1〉) or something

that can be obtained from this with local operations.

• Shared randomness. The parties have randomness, i.e., they are allowed to toss coins. In
the case of shared randomness, the parties both share the same string of coins. This could
for instance be implemented by having the parties toss the coins beforehand, at some earlier
time when they are together, and then use the coins later when they need to solve the
communication complexity problem.

• Local randomness. The parties have randomness, i.e., they are allowed to toss coins. In the
case of local randomness the coins are tossed locally, and the string of outcomes of the coins
for Alice is independent of the string of outcomes of the coins for Bob.

The rational for measuring classical information in terms of bits is Shannon’s noiseless cod-
ing theorem [Shannon(1948)], which states that, asymptotically, the information produced by a
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stochastic source can be encoded in a number of bits equal to the entropy of the source. This
is paralleled in the quantum case by Schumacher compression [Schumacher(1995)], which states
that, asymptotically, the information produced by a stochastic quantum source can be encoded
into a number of qubits equal to the von Neumann entropy of the source. And it is paral-
leled in the case of entanglement, by entanglement distillations, namely the fact that pure two-
party entangled states can, asymptotically in the number of copies of the state, be converted
into the number of ebits equal to the von Neumann entropy of the reduced density matrix of each
party [Bennett et al.(1996a)Bennett, Bernstein, Popescu, and Schumacher]. In the context of com-
munication complexity, however, we are not dealing with the asymptotic limit of large amounts of
communication or large amounts of entanglement. Thus whereas in most cases we will keep the
basic concepts of bits, qubits and ebits, it could be relevant in specific cases to consider variants
on these resources, such as trits, non-maximally entangled states, etc.

The above resources have been ordered (more or less) from the strongest to the weakest. Indeed
most of these resources imply the ones below them. For instance one can send classical information
using qubits; one can use quantum communication to distribute entanglement; one can measure
the entangled particles to produce shared randomness, etc. The only case where the ordering is
not so clear is between classical communication and entanglement. Indeed if two parties share an
entangled state, they cannot use it to communicate (as discussed above). But on the other hand
(as discussed below) sharing n ebits may allow one to save an exponentially large (in n) amount
of bits in some communication scenarios (whereas in all other cases, n uses of one resource allows
one to implement n uses of the resources below it).

There are also a number of nontrivial ways in which these resources can be substituted one for the
other. Quantum teleportation allows one to substitute one ebit and two bits of classical communica-
tion for one qubit of quantum communication [Bennett et al.(1993)Bennett, Brassard, Crépeau, Jozsa, Peres, and
Dense coding shows that sharing one ebit and then communicating one qubit allows one to com-
municate two bits [Bennett and Wiesner(1992)]. Newman’s Theorem states that in the context of
communication complexity, having shared randomness can save only a small amount of communi-
cation compared to having local randomness [Newman(1991)].

In addition we will at some points in this review consider other additional (more specialized or
more exotic) resources. For instance one can consider

• One-way classical or quantum communication. Alice is allowed to communicate to Bob, but
Bob is not allowed to communicate back to Alice.

• Simultaneous Message Passing model. In this model there is a third party, called the Referee,
and messages are only allowed from Alice to the Referee and from Bob to the Referee. It is
the Referee who has to compute the value of the function f(x, y).

• Multipartite entanglement. Sometimes one is interested in non-locality or communication
complexity between more than two parties. Contrary to bipartite entanglement where it is
sufficient to consider ebits, there are many kinds of multiparticle entanglement (such as GHZ
states, W states, etc.) which could be useful for solving different communication problems.

• Non-local (or PR) boxes. This exotic resource is intermediate between an ebit and a bit.
Indeed, it is a resource which does not enable the parties to communicate (in the same way
that entanglement does not allow communication). But to be produced physically it requires
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a bit of communication between the parties at the moment it is used (contrary to entangle-
ment which once established requires no more communication). Its study provides a deeper
understanding of the power and limitations of quantum entanglement in communication com-
plexity.

1.6 Basic scenarios

The basic question asked in communication complexity and quantum non-locality is to understand
how much of these resources are required in different situations.

Thus classical communication complexity [Kushilevitz and Nisan(1997)] is basically concerned
with understanding how much classical communication is required to compute the value of a func-
tion f(x, y), possibly using (shared or local) randomness.

In quantum communication complexity the parties are trying to compute the value of f , but may
now use quantum resources. In the quantum communication model, introduced by Yao [Yao(1993)],
they can communicate qubits, and in the entanglement model, introduced by Cleve and Buhrman [Cleve and Buhrman(1997)
the parties share entangled particles and are allowed to communicate classical bits. When one
extends the quantum communication model of Yao such that the parties also share entangled par-
ticles, quantum teleportation shows that these two models are essentially equivalent: one qubit in
the first model can be replaced by two bits and one ebit in the entanglement, and conversely one
bit can be simulated by one qubit. It is, however, a challenging open problem whether the quantum
communication model, without shared entanglement, is essentially equivalent to the entanglement
model.

Non-locality, although at first sight a very different topic, is also concerned with comparing
resources. Indeed the basic question in this area is to compare:

• The correlations that can be obtained if the parties share entanglement and carry out local
measurements on their particles, but are not allowed any communication.

• The correlations that can be obtained if the parties have shared randomness, but are not
allowed any communication. This is known in the physics literature as a local hidden variable
model.

Bell’s Theorem states that these two scenarios are not equivalent: shared randomness alone is
not sufficient to reproduce the quantum correlations.

1.7 Mappings between communication complexity and non-locality

Thus quantum communication complexity, classical communication complexity, and non-locality
can be put in a unified framework in which similar kinds of resources are compared. In addition,
in some cases there exist mappings between quantum communication complexity scenarios and
non-locality scenarios.

The most simple such mapping occurs in the entanglement model if the parties can solve the
communication complexity problem more efficiently using entanglement than without entangle-
ment, and if this can be done by measuring their entangled particles before they communicate to
each other. Then it immediately follows that the correlations obtained by measuring their entangled
particles (but without communicating), cannot be realized in a local hidden variable model.

Conversely it is possible to map any non-locality experiment to a communication complexity
problem in the entanglement model. This was the approach used in the original paper [Cleve and Buhrman(1997)
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It mapped the non-local correlations that arise in the GHZ paradox to a communication complexity
problem. This approach has since been generalized [Brukner et al.(2004)Brukner, Żukowski, Pan, and Zeilinger],
although in the resulting communication complexity problem the function f(x, y) is only computed
successfully by the parties with non-zero probability.

Another mapping can occur in the quantum communication model when one-way quantum
communication from Alice to Bob is more efficient than classical communication. Then it is often
possible to construct from the communication complexity problem a nontrivial non-locality scenario.
This approach has yielded some very interesting non-locality scenarios which we will describe in
detail below.

1.8 Summary of the review

In this review we will present some of the main results obtained so far in the field of quantum
communication complexity. We start by introducing quantum non-locality in Section 2, focusing on
its relation with communication complexity. We present simple examples such as the GHZ paradox,
the CHSH example, the magic square game, but rephrasing them in the language of data processing.
Next we present quantum communication complexity in Section 3, illustrating it with examples such
as the distributed Deutsch-Jozsa problem, the intersection problem, Raz’s problem, and the hidden
matching problem. In Section 4 we unite these two approaches, showing how some of the examples
from quantum communication complexity can be used to derive new non-locality games. In section 5
we discuss another model of communication complexity, the simultaneous message passing model,
and show how classical communication, entanglement, quantum communication can be traded one
for the other in this model. In Section 6 we discuss several additional aspects of quantum non-
locality, such as non-local boxes, Tsirelson bounds, and simulation of quantum correlations using
classical resources. Finally we consider in Section 7 experimental issues, in particular the detection
loophole, and present the outlook for future experiments. We conclude by discussing some open
questions in the field. The interested reader can also consult the earlier review [Brassard(2003)]
which covers some of the material presented here.

2 Simple Non-locality Examples

The idea of non-locality was originally concerned with the possibility that quantum mechanics is
actually a classical theory that depends on “hidden variables” whose values might be discovered
in the future as part of some successor theory to quantum mechanics. Bell [Bell(1965)] proposed a
hypothetical experiment for ruling out such classical theories under the assumption that measure-
ments of quantum systems can occur at different points in space-time, and information cannot be
transmitted faster than the speed of light.

Another way of interpreting Bell’s experiment is as a method for two (or more) cooperating
distributed parties to compute some sort of input-output relation, where each party receives input
data and must produce output data consistent with the relation. In Bell’s experiment, there is such
a task that cannot be accomplished in a setting where the information processing resources are all
classical. In contrast, the task can be accomplished if the parties share prior entanglement.

Since Bell’s seminal work, the concept of quantum non-locality has been extensively studied, by
physicists, philosophers, and more recently by computer scientists. Some of the important early ad-
vances have been the Clauser-Horn-Shimony-Holt (CHSH) inequality [Clauser et al.(1969)Clauser, Horne, Shimoney
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which allows Bell’s surprising predictions to be tested even in the presence of noise; and the GHZ-
Mermin scenario [Greenberger et al.(1989)Greenberger, Horne, and Zeilinger, Mermin(1990b)] which
was the first ”pseudo-telepathy” game. More recently there has been a more or less system-
atic enumeration of Bell inequalities for small number of settings and/or outcomes (see, e.g.,
[Collins et al.(2002)Collins, Gisin, Linden, Massar, and Popescu, Collins and Gisin(2004), Werner and Wolf(2001a)
Żukowski and Brukner(2002)]); the study of the statistical power of non-locality tests [Dam et al.(2005)Dam, Gill,
an understanding of the limits to quantum non-locality (Tsirelson-type bounds) [(Cirel’son)(1980)]
as compared to the larger world of correlations obeying only the no-signalling conditions (e.g., non-
local boxes); investigations of the power of non-locality in cryptographic settings [Barrett et al.(2005a)Barrett, Hardy
etc.

In the next paragraphs we review various non-locality scenarios, casting them in the language of
data processing. The reader wishing to complement this overview could consult two recent reviews,
written more from physics [Werner and Wolf(2001b)] and computer science [Brassard et al.(2005)Brassard, Broadb
perspectives.

2.1 GHZ: Greenberger-Horne-Zeilinger and Mermin

The following scenario essentially underlies those of [Greenberger et al.(1989)Greenberger, Horne, and Zeilinger,
Mermin(1990b)], but is cast in the language of data processing. The basic structure is illustrated
in Fig. 3. Three physically separated parties—call them Alice, Bob, and Carol—receive input bits

&%
'$

Alice

s

a

?

?

&%
'$

Bob

t

b

?

?

&%
'$
Carol

u

c

?

?

Inputs:

Outputs:

Figure 3: The general form of a non-locality scenario involving three parties: Alice, Bob, and
Carol receive inputs s, t, u respectively, and are required to produce outputs a, b, c, respectively,
satisfying certain conditions. Once the inputs are received, no communication is permitted between
the parties. For the specific GHZ scenario, it is possible to accomplish the task if the parties are
in possession of a tripartite entangled state. Without the prior entanglement, it is impossible to
accomplish the task.

s, t, and u, respectively, which are arbitrary subject to the condition that s⊕ t⊕ u = 0 (⊕ denotes
exclusive or, which is the sum of its arguments in modulo 2 arithmetic). Once they receive their
input data, they are forbidden from having any communication between them. Their goal is to
produce output bits a, b, and c, respectively, such that

a⊕ b⊕ c =

{

0 if stu = 000

1 if stu ∈ {011, 101, 110}.
(1)
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Note that the task that the three parties are trying to accomplish is the computation of a relation,
where there are three input bits (stu) and three output bits (abc). The task is nontrivial in light of
the fact that the input bits are distributed among the parties so that each party is given the value
of only one of them; the output bits are also distributed.

The first observation is that with classical resources there must be communication among the
three parties to succeed. To see why this is so, first consider deterministic strategies (later we
will analyze the case of probabilistic strategies, where the parties behave stochastically, i.e., they
can flip coins). Since Alice cannot receive any information from Bob or Carol, her output bit a
can depend only on the value of her input bit s. Let a0 (respectively a1) be Alice’s output when
her input bit is 0 (respectively 1). Similarly, let b0, b1 and c0, c1 be Bob and Carol’s outputs for
their respective input values. Note that the six bits a0, a1, b0, b1, c0, c1 completely characterize any
deterministic strategy of Alice, Bob, and Carol. The conditions of the problem translate into the
equations

a0 ⊕ b0 ⊕ c0 = 0,

a0 ⊕ b1 ⊕ c1 = 1,

a1 ⊕ b0 ⊕ c1 = 1,

a1 ⊕ b1 ⊕ c0 = 1. (2)

It is impossible to satisfy all four equations simultaneously. This is because summing the four
equations modulo two, yields 0 = 1 (recall that 1 + 1 = 0 modulo 2). Therefore, for any strategy,
there exists an input configuration stu ∈ {000, 011, 101, 110} for which it fails. Note however that
for any three out of the four equations from (2) there is a strategy that satisfies these three equations
perfectly.

To see why probabilistic strategies cannot succeed either, note that any such strategy can be
modeled as a deterministic strategy where Alice, Bob, and Carol have access to a random variable
r (for example, r could be the outcomes of a sequence of uniformly distributed random bits). This
r is sometimes referred to as a “local hidden variable”. It is assumed that the testing procedure
does not have access to r, so that the input bits (stu) are uncorrelated with r. The intuitive
way of thinking about this scenario is that the three parties get together before the game starts,
randomly select r, and then each party secretly keeps a copy of this information. An example of a
probabilistic strategy is for r ∈ {0, 1}2 to be two uniformly random bits that specify which three
of the four equations in (2) are satisfied. This probabilistic strategy succeeds with probability 3/4.
We next show that this success probability is optimal.

Suppose that the input data s, t, u is uniformly distributed over {000, 011, 101, 110}. Then the
success probability that any randomized protocol achieves is

∑

r

qr
1

4

∑

s,t,u

P (s, t, u, r), (3)

where qr is the probability (of the shared randomness) that the parties flip r, and P (s, t, u, r) = 1 if
the deterministic protocol corresponding to r is correct on input stu and P (s, t, u, r) = 0 otherwise.
Clearly this is bounded above by

max
r

1

4

∑

s,t,u

P (s, t, u, r), (4)

which by the above discussion is at most 3/4.
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Now consider the same problem, but where Alice, Bob, and Carol have an additional resource:
each is supplied with a qubit, where the state of the combined 3-qubit system is1

1
2 |000〉 − 1

2 |011〉 − 1
2 |101〉 − 1

2 |110〉. (5)

The parties are allowed to apply unitary transformations and perform measurements on their
individual qubits, but communication between the parties is still forbidden. It turns out that now
the parties can produce a, b, c satisfying Eq. (1). This is achieved by the procedure that follows.

The procedure for Alice is to measure her qubit in the computational basis (consisting of |0〉
and |1〉) if her input bit s is 0, and to measure her qubit in the Hadamard basis (consisting of
H|0〉 = 1√

2
(|0〉 + |1〉) and H|1〉 = 1√

2
(|0〉 − |1〉)) if her input bit is 1. In either case, she sets her

output bit a to the outcome of her measurement. The procedures for Bob and Carol are similar to
that of Alice, but with Bob’s bits being s and b, and Carol’s bits being u and c.

To see why the described procedure always produces output bits abc satisfying Eq. (1), consider
the various cases of the input possibilities stu. In the case where stu = 000, the state is measured
in the computational basis, so clearly the outcomes are from {000, 011, 101, 110}, and hence satisfy
a⊕ b⊕ c = 0. The case where stu = 011 can be analyzed by assuming that a Hadamard transform
is applied to the last two qubits of the state prior to a measurement in the computational basis.
Since

(I ⊗H ⊗H) (1
2 |000〉 − 1

2 |011〉 − 1
2 |101〉 − 1

2 |110〉)
= (I ⊗H ⊗H)

(

1
2 |0〉(|00〉 − |11〉) − 1

2 |1〉(|01〉 + |10〉)
)

= 1
2 |0〉(|01〉 + |10〉) − 1

2 |1〉(|00〉 − |11〉)
= 1

2 |001〉 + 1
2 |010〉 − 1

2 |100〉 + 1
2 |111〉, (6)

a⊕ b ⊕ c = 1, as required, in this case. The remaining cases where stu = 101 and 110 are similar
by the symmetry of the entangled state and protocol.

We have shown that the entangled state enables the three parties to correlate their output bits
with their inputs bits in a manner that is impossible to achieve with classical resources, unless there
is communication among the parties. It should be noted that, in accomplishing this task using the
entangled state, no actual communication occurs among the parties. In particular, the output bits
a, b, and c individually contain no information about stu; they are uniformly distributed in all
cases. It is only the trivariate correlations among a, b, and c that are related to the input data stu.

2.2 CHSH: Clauser-Horne-Shimony-Holt

The following scenario essentially underlies that of [Clauser et al.(1969)Clauser, Horne, Shimoney, and Holt]
but is cast in the language of data processing. The basic structure is illustrated in Fig. 4. Alice and
Bob receive input bits s and t, respectively, and, after this, they are forbidden from communicating
with each other. Their goal is to produce output bits a and b, respectively, such that

a⊕ b = s ∧ t, (7)

(‘∧’ is the logical and, which is 1 if all its arguments are 1, and which is 0 otherwise) or, failing that,
to satisfy this condition with as high a probability as possible. To analyze the situation in terms

1This is an entangled state that is equivalent to the so-called GHZ state 1√
2
|000〉 + 1√

2
|111〉 (under local unitary

operations).
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Figure 4: The non-locality scenario involving two parties: Alice and Bob receive inputs s and t
respectively, and are required to produce outputs a and b respectively, satisfying certain conditions.
Once the inputs are received, no communication is permitted between the parties. For the specific
CHSH scenario, it is possible to accomplish the task with probability cos2(π/8) = 0.853 . . . if the
parties are in possession of an ebit. Without the prior entanglement, the highest possible success
probability is 3/4.

of classical information, first again consider the case of deterministic strategies. For these, Alice’s
output bit depends solely on her input bit s and similarly for Bob. Let a0, a1 be the two possibilities
for Alice and b0, b1 be the two possibilities for Bob. These four bits completely characterize any
deterministic strategy. Condition (7) translates into the equations

a0 ⊕ b0 = 0,

a0 ⊕ b1 = 0,

a1 ⊕ b0 = 0,

a1 ⊕ b1 = 1. (8)

It is impossible to satisfy all four equations simultaneously (since summing them modulo 2 yields
0 = 1). Therefore it is impossible to satisfy Condition (7) absolutely. By using a probabilistic
strategy, Alice and Bob can satisfy Condition (7) with probability 3/4. For such a strategy, we
allow Alice and Bob to have a priori classical random variables, whose distribution is independent of
that of the inputs s and t. Note that any three of the four equations of (8) can be simultaneously
satisfied. The probabilistic classical strategy works as follows. Alice and Bob have uniformly-
distributed random bits that are used to specify which of the four equations of (8) is violated, and
then play the strategy that satisfies the other three perfectly. It is easy to see that (a) for any input
st, the resulting outputs satisfy Condition (7) with probability 3/4, and (b) this is optimal in that
no probabilistic strategy can attain a success probability greater than 3/4.

Now consider the same problem but where Alice and Bob are each supplied with a qubit where
the state of the two-qubit system is initialized to

1√
2
(|00〉 − |11〉). (9)

It turns out that now the parties can produce data that satisfies Condition (7) with probability
cos2(π/8) = 0.853 . . ., which is higher than what is possible in the classical case. This is achieved
by the following procedures. Denote the unitary operation that rotates the qubit by angle θ by
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R(θ) =

(

cos θ − sin θ
sin θ cos θ

)

(where we have written it out in the computational basis). Alice applies

one of two rotations on her qubit, depending on her input bit s: if s = 0 the rotation is R(−π/16);
if s = 1 the rotation is R(3π/16). Then Alice measures her qubit in the computational basis and
sets her output bit a to the result. Bob’s procedure is the same, depending on his input bit t. It is
straightforward to calculate that, if Alice rotates by θ1 and Bob rotates by θ2, then the entangled
state becomes

1√
2
(cos(θ1 + θ2)(|00〉 − |11〉) + sin(θ1 + θ2)(|01〉 + |10〉)). (10)

After the measurements, the probability that a ⊕ b = 0 is cos2(θ1 + θ2). It is now a straightfor-
ward exercise to verify that Condition 7 is satisfied with probability cos2(π/8) for all four input
possibilities.

2.3 Tsirelson’s upper bound for CHSH

Although the protocol in the previous subsection using entanglement has a higher success probabil-
ity (cos2(π/8) = 0.853 . . .) than any classical protocol (3/4), it still does not succeed with probabil-
ity 1. This raises the question of whether there is a different strategy using entanglement that always
succeeds—or, failing that, whose success probability exceeds cos2(π/8). Tsirelson [(Cirel’son)(1980)]
first showed that the above quantum protocol is optimal in that it is impossible to exceed success
probability cos2(π/8), regardless of the strategy—including any amount of prior entanglement—the
parties start with. What follows is a simple proof of this result.

Consider an arbitrary bipartite entangled state |ψ〉AB . An arbitrary strategy for Alice that
uses this entangled state can be represented by two observables2 A0 and A1, each with eigenvalues
in {+1,−1}. When Alice’s input bit is 0, she obtains her output bit by applying the projective
measurement corresponding to the eigenspaces of A0 to the component of |ψ〉AB in her possession.
The +1-eigenspace of A0 corresponds to output bit 0, while the −1-eigenspace corresponds to the
output bit 1. When her input bit is 1, she applies the measurement corresponding to A1. Similarly,
an arbitrary strategy for Bob can be represented by two observables B0 and B1.

At this point, the reader might object that |ψ〉AB , A0, A1, B0, and B1 do not capture every
possible strategy of Alice and Bob, since they need not be limited to applying projective measure-
ments. Although non-projective measurements may be used, such measurements can always be
simulated by projective measurements in a larger Hilbert space. Thus, no generality has been lost
because any strategy can be converted to the above form.

Since the observables have eigenvalues in {+1,−1} rather than {0, 1}, it is more convenient here
to think of Alice and Bob’s output bits in these terms as a′ = (−1)a and b′ = (−1)b, respectively.
Then the protocol succeeds on input st if and only if (−1)s∧t · a′ · b′ = 1.

If s and t are randomly chosen according the uniform distribution, then the expected value of
(−1)s∧t · a′ · b′ is

〈ψ|AB

(

1
4A0 ⊗B0 + 1

4A0 ⊗B1 + 1
4A1 ⊗B0 − 1

4A1 ⊗B1

)

|ψ〉AB , (11)

and is therefore upper bounded by the largest eigenvalue of

M = 1
4A0 ⊗B0 + 1

4A0 ⊗B1 + 1
4A1 ⊗B0 − 1

4A1 ⊗B1. (12)

2An observable is a Hermitian operator. One associates to an observable a projective measurement, with one
projector for each of the eigenspaces of the observable.
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It is straightforward to calculate that

M2 = 1
4I− 1

16 (A0A1)⊗(B0B1)+
1
16 (A0A1)⊗(B1B0)+

1
16(A1A0)⊗(B0B1)− 1

16 (A1A0)⊗(B1B0), (13)

from which we can upper bound the maximum eigenvalue of M2 by the sum of the maximum
eigenvalue in each term, obtaining 1

4 + 1
16 + 1

16 + 1
16 + 1

16 = 1
2 . It follows that the largest eigenvalue

of M itself is at most 1/
√

2, which therefore upper bounds the expected value of (−1)s∧t · a′ · b′.
This translates into an upper bound of (1 + 1/

√
2)/2 = cos2(π/8) for the success probability of the

actual protocol (where Alice and Bob output bits a and b). This completes the proof of Tsirelson’s
upper bound for CHSH.

2.4 Magic square game

In one respect the GHZ example is more striking than the CHSH example: in the former case, the
protocol with entanglement always succeeds, while in the latter case the protocol with entanglement
merely succeeds with higher probability. However, the GHZ example involves three parties, whereas
the CHSH example only involves two. Is there a two-party scenario where the quantum protocol
always succeeds, whereas the best classical success probability is bounded below 1? The answer is
affirmative, see for instance [Cabello(2001b), Cabello(2001a), Cabello(2005)]. A particularly elegant
example is the following game, which has been referred to as the magic square game [Aravind(2002)].

To define this game, consider the problem of labeling the entries of a 3 × 3 matrix with bits so
that the parity of each row is even, whereas the parity of each column is odd. It is not hard to see
that this is impossible3. The two matrices

0 0 0

0 0 0

1 1 0

0 0 0

0 0 0

1 1 1

each satisfy five out of the six constraints. For the first matrix, all rows have even parity, but only
the first two columns have odd parity. For the second matrix, the first two rows have even parity,
and all columns have odd parity.

Bearing the above in mind, consider the game where Alice receives s ∈ {1, 2, 3} as input (spec-
ifying the number of a row), and Bob receives t ∈ {1, 2, 3} as input (specifying the number of a
column). Their goal is to each produce 3-bit outputs, a1a2a3 for Alice and b1b2b3 for Bob, with
these properties:

1. They satisfy the row/column parity constraints. Namely, a1⊕a2⊕a3 = 0 and b1⊕b2⊕b3 = 1.

2. They are consistent where the row intersects the column. Namely, at = bs.

As usual, Alice and Bob are forbidden from communicating once the game starts, so Alice does
not know what t is and Bob does not know what s is. We shall observe that, classically, the best
success probability possible is 8/9, whereas there is a quantum strategy that always succeeds.

An example of a strategy that attains success probability 8/9 (when the input st is uniformly
distributed) is where Alice plays according to the rows of the first matrix above and Bob plays

3As before, we can express a valid solution in terms of equations, in this case six of them (where arithmetic is
modulo 2): m11+m12+m13 = 0, m21+m22+m23 = 0, m31+m32+m33 = 0, m11+m21+m31 = 1, m12+m22+m32 = 1,
m13 + m23 + m33 = 1. Adding these equations modulo 2 yields 0 = 1.

16



according the columns of the second matrix above. This succeeds in all cases, except where s = t =
3. To see why this is optimal, note that for any other classical strategy, it is possible to represent
it as two matrices as above but with different entries. Alice plays according to the rows of the first
matrix and Bob plays according to the columns of the second matrix. We can assume that the rows
of Alice’s matrix all have even parity; if she outputs a row with odd parity then they immediately
lose, regardless of Bob’s output. Similarly, we can assume that all columns of Bob’s matrix have
odd parity.4 Considering such a pair matrices, the players lose at each entry where they differ.
There must be such an entry, since otherwise it would be possible to have all rows even and all
columns odd with one matrix. Thus, when the input st is chosen uniformly from {1, 2, 3}×{1, 2, 3},
the success probability is at most 8/9.

The quantum strategy for this game is based on the following observation due to Mermin [Mermin(1990a),
Mermin(1993)]. Let I, X, Y , Z denote the 2 × 2 Pauli matrices:

I =

(

1 0
0 1

)

, X =

(

0 1
1 0

)

, Y =

(

0 −i
i 0

)

, and Z =

(

1 0
0 −1

)

. (14)

Each is an observable with eigenvalues in {+1,−1}. Consider the following table of two-qubit
observables that are each a tensor product of two Pauli matrices:

X ⊗X Y ⊗ Z Z ⊗ Y

Y ⊗ Y Z ⊗X X ⊗ Z

Z ⊗ Z X ⊗ Y Y ⊗X

For our present purposes, the noteworthy property is that the observables along each row commute
and their product is I ⊗ I, and the observables along each column commute and their product
is −I ⊗ I. This implies that, for any two-qubit state, performing the three measurements along
any row results in three {+1,−1}-valued bits whose product is +1. Also, performing the three
measurements along any column results in three {+1,−1}-valued bits whose product is −1. This
can be seen more easily when one simultaneously diagonalizes the three commuting observables.
They will have 1 and −1 eigenvalues on the diagonal. Each consecutive observable will project the
state onto a possible refinement of the current eigenspace the state lies in. This will yield that the
product of the outcomes of the three observables will be 1 in case the observables belong to a row
of the matrix, because the product of the row observables is I ⊗ I, and −1 when they belong to a
column, since the product of the observables for each column is −I ⊗ I.

We can now describe the quantum protocol. It uses two pairs of entangled qubits, each of
which is in initial state 1√

2
(|01〉 − |10〉). Alice, on input s, applies three two-qubit measurements

corresponding to the observables in row s of the above table. For each measurement, if the result
is +1, she outputs 0 and if the result is −1, she outputs 1. Similarly, Bob, on input t, applies the
measurements corresponding to the observables in column t, and converts the outcomes into bits
in the same manner.

We have already established that Alice and Bob’s output bits satisfy the required parity con-
straints. It remains to show that Alice and Bob’s output bits that correspond to where the row
meets the column are the same. For that measurement, Alice and Bob are measuring with respect
to the same observable in the above table. Because all the observables in each row and in each
column commute, we may assume that the place where they intersect is the first observable applied.

4In fact, the game can be simplified so that Alice and Bob each output just two bits, since the parity constraint
determines the third bit.
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Those bits are obtained by Alice and Bob each measuring 1
2(|01〉− |10〉)(|01〉− |10〉) with respect to

the observable in entry (s, t) of the table. To show that their measurements will agree for all cases
of st, we consider the individual Pauli measurements on the individual entangled pairs of the form
1√
2
(|01〉 − |10〉). Let a′ and b′ denote the outcomes of the first measurement (in terms of bits), and

a′′ and b′′ denote the outcomes of the second. Since the measurement associated with the tensor
product of two observables is operationally equivalent to measuring each individual observable and
taking the product of the results, we have that at = a′ ⊕ a′′ and bs = b′ ⊕ b′′. It is straightforward
to verify that if the same measurement from {X,Y,Z} is applied to each qubit of 1√

2
(|01〉 − |10〉)

then the outcomes will be distinct. Therefore, a′ ⊕ b′ = 1 and a′′ ⊕ b′′ = 1, from which it follows
that

at ⊕ bs = (a′ ⊕ a′′) ⊕ (b′ ⊕ b′′)

= (a′ ⊕ b′) ⊕ (a′′ ⊕ b′′)

= 1 ⊕ 1

= 0, (15)

so at = bs. This completes the analysis of the magic square game.

3 Communication Complexity

In the last section we considered scenarios without communication. Here we will extend the non-
locality setting to one where the parties (Alice and Bob) are allowed to send information to each
other in the form of bits or qubits. They can still have shared randomness and may share an
entangled quantum state. We are now interested in the minimum number of bits or qubits that
are needed in order to compute a function that depends on the inputs of all the parties.

The ability to send information to each other departs from the setting of non-locality. We will
see that entanglement can be used to reduce (for certain functions) the communication drastically
compared to when the parties share just classical resources. Accordingly, while entanglement cannot
be used for signalling, it can be used to significantly reduce the communication needed for certain
tasks. In later sections we will see how some of the ideas and protocols developed in the setting of
communication complexity can be used to formulate new non-locality games.

Communication complexity has been studied extensively in the area of theoretical computer
science and has deep connections with seemingly unrelated areas, such as VLSI design, circuit lower
bounds, lower bounds on branching programs, size of data structures, and bounds on the length of
logical proof systems, to name just a few. We refer to the textbooks [Kushilevitz and Nisan(1997),
Hromkovič(1997)] for more details.

3.1 The setting

First we sketch the setting for classical communication complexity. Alice and Bob want to compute
some function f : D → {0, 1}, where D ⊆ X × Y . If the domain D equals X × Y then f is called
a total function, otherwise it is a promise function. Alice receives input x ∈ X, Bob receives input
y ∈ Y , with (x, y) ∈ D. A typical situation, illustrated in Fig. 2, is where X = Y = {0, 1}n, so
both Alice and Bob receive an n-bit input string. As the value f(x, y) will generally depend on
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both x and y, some communication between Alice and Bob is required in order for them to be able
to compute f(x, y). We are interested in the minimal amount of communication they need.

A communication protocol is a distributed algorithm where first Alice does some individual
computation, and then sends a message (of one or more bits) to Bob, then Bob does some compu-
tation and sends a message to Alice, etc. Each message is called a round. After one or more rounds
the protocol terminates and outputs some value, which must be known to both players. The cost
of a protocol is the total number of bits communicated on the worst-case input. A deterministic
protocol for f always has to output the right value f(x, y) for all (x, y) ∈ D. In a bounded-error
protocol, Alice and Bob may flip coins and the protocol has to output the right value f(x, y) with
probability ≥ 2/3 for all (x, y) ∈ D. We could either allow Alice and Bob to toss coins individually
(local randomness, or “private coin”) or jointly (shared randomness, or “public coin”). The later is
analogous to the local hidden variables in non-locality games. A public coin can simulate a private
coin and is potentially more powerful. However, Newman’s theorem [Newman(1991)] says that
having a public coin can save at most O(log n) bits of communication, compared to a protocol with
a private coin.

Some often studied functions are:

• Equality: EQ(x, y) = 1 if x = y, and EQ(x, y) = 0 otherwise

• Inner product: IP(x, y) =
∑n

i=1 xiyi (mod 2) (for x, y ∈ {0, 1}n, xi is the ith bit of x)

• Intersection: INT(x, y) = 1 if there is an i where xi = yi = 1, and INT(x, y) = 0 otherwise
(viewing x as corresponding to the set {i : xi = 1} and similarly for y, INT(x, y) says whether
the sets x and y intersect). A variant of this problem asks to actually find an i where
xi = yi = 1, or to output that none such i exists.

Let us first consider the equality problem, which will recur throughout the text. The goal for Alice
is to determine whether her n-bit input is the same as Bob’s or not. It is not hard to show that
in the deterministic case, n bits of communication are needed (see Section B.1 of the appendix for
a proof), so Bob might as well send his string to Alice after which Alice announces the answer to
Bob with one more bit.

To illustrate the power of randomness, let us give a simple yet efficient bounded-error protocol
for the equality problem. Alice and Bob jointly toss a random string r ∈ {0, 1}n. Alice sends the
bit a = x · r to Bob (where ‘·’ is inner product mod 2). Bob computes b = y · r and compares
this with a. If x = y then a = b, but if x 6= y then a 6= b with probability 1/2. Repeating this a
few times, Alice and Bob can decide equality with small error using O(n) public coin flips and a
constant amount of communication.

This protocol uses public coins, but note that Newman’s theorem implies that there exists
an O(log n)-bit protocol that uses a private coin. Let us explicitly describe such a protocol. Alice
views her n bits as the coefficients of a polynomial px over some finite field F of about 3n elements:5

px(t) =
∑n

i=1 xit
i−1. She picks a random element a ∈ F, and sends Bob the pair a, px(a), which

she can do using 2 log(3n) bits. Bob computes py(a) and outputs 1 if px(a) = py(a), and outputs
0 otherwise. Clearly, if x = y then Bob always outputs the correct answer 1. However, if x 6= y
then the polynomial px(t)−py(t) is a polynomial in t of degree at most n−1 that is not identically
equal to 0. Such a polynomial can be 0 on at most n− 1 elements of F. Hence with probability at

5For those not familiar with finite fields: it suffices to choose a prime number p ≈ 3n and do all additions and
multiplications modulo this p.
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least 2/3, the field element a that Alice chose satisfies px(a) 6= py(a), and Bob will give the correct
output 0 also in this case.

3.2 The quantum question

Now what happens if we give Alice and Bob a quantum computer and allow them to send each
other qubits and/or to make use of ebits that they share at the start of the protocol?

Formally speaking, we can model a quantum protocol as follows. The total state consists
of 3 parts: Alice’s private space, the channel, and Bob’s private space. The starting state is
|x〉|0〉|y〉: Alice gets x, the channel is initialized to 0, and Bob gets y. Now Alice applies a unitary
transformation to her space and the channel. This corresponds to her private computation as well
as to putting a message on the channel (the length of this message is the number of channel-qubits
affected by Alice’s operation). Then Bob applies a unitary transformation to his space and the
channel, etc. At the end of the protocol Alice or Bob makes a measurement to determine the
output of the protocol. This model was introduced by Yao [Yao(1993)].

In the second model, introduced by Cleve and Buhrman [Cleve and Buhrman(1997)], Alice and
Bob share an unlimited number of ebits at the start of the protocol, but now they communicate
via a classical channel: the channel has to be in a classical state throughout the protocol. We
only count the communication, not the number of ebits used. Protocols of this kind can simulate
protocols of the first kind with only a factor 2 overhead: using teleportation, the parties can send
each other a qubit using an ebit and two classical bits of communication. Hence the qubit-protocols
that we describe below also immediately yield protocols that work with entanglement and a classical
channel. Note that an ebit can simulate a public coin toss: if Alice and Bob each measure their
half of the pair of qubits, they get the same random bit.

The third variant combines the strengths of the other two: here Alice and Bob start out with an
unlimited number of ebits and they are allowed to communicate qubits. This third kind of commu-
nication complexity is in fact equivalent to the second, up to a factor of 2, again by teleportation.

Before continuing to study this model, we first have to face an important question, already
mentioned in the introduction: is there anything to be gained here? At first sight, the following
argument seems to rule out any significant gain. Suppose that in the classical world k bits have to
be communicated in order to compute f . Since Holevo’s theorem says that k qubits cannot contain
more information than k classical bits, it seems that the quantum communication complexity should
be roughly k qubits as well (maybe k/2 to account for superdense coding, but not less). Surpris-
ingly (and fortunately for us), this argument is false, and quantum communication can sometimes
be much less than classical communication complexity. The information-theoretic argument via
Holevo’s theorem fails, because Alice and Bob do not need to communicate the information in the
k bits of the classical protocol; they are only interested in the value f(x, y), which is just 1 bit.
Below we will survey some of the main examples that have so far been found of differences between
quantum and classical communication complexity.

3.3 The first examples

Quantum communication complexity was introduced by Yao [Yao(1993)] and studied by Kre-
mer [Kremer(1995)], but neither showed any advantages of quantum over classical communication.
Cleve and Buhrman [Cleve and Buhrman(1997)] introduced the variant with classical communica-
tion and prior entanglement, and exhibited the first quantum protocol provably better than any clas-
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sical protocol. It uses quantum entanglement to save 1 bit of classical communication. This gap was
extended by Buhrman, Cleve, and van Dam [Buhrman et al.(2001)Buhrman, Cleve, and Dam] and,
for arbitrary k parties, by Buhrman, van Dam, Høyer, and Tapp [Buhrman et al.(1999)Buhrman, Dam, Høyer, and

3.4 Distributed Deutsch-Jozsa

The first impressively large gaps between quantum and classical communication complexity were ex-
hibited by Buhrman, Cleve, and Wigderson [Buhrman et al.(1998)Buhrman, Cleve, and Wigderson].
Their protocols are distributed versions of known quantum query algorithms, like the Deutsch-
Jozsa [Deutsch and Jozsa(1992)] and Grover [Grover(1996)] algorithms.

Let us start with the first one. It is actually explained most easily in a direct way, without
reference to the Deutsch-Jozsa algorithm (though that is where the idea came from). The problem
deals with a promise version of the equality problem. Suppose the n-bit inputs x and y are restricted
to the following case:

DJ promise: either x = y, or x and y differ in exactly n/2 positions

Note that this promise only makes sense if n is an even number, otherwise n/2 would not be integer.
In fact it will be convenient to assume n a power of 2. Here is a simple quantum protocol to solve
this promise version of equality using only log n qubits:

1. Alice sends Bob the log n-qubit state 1√
n

∑n
i=1(−1)xi |i〉, which she can prepare unitarily from

x and log n |0〉-qubits.

2. Bob applies the unitary map |i〉 7→ (−1)yi |i〉 to the state, applies a Hadamard transform to
each qubit (for this it is convenient to view i as a log n-bit string), and measures the resulting
log n-qubit state.

3. Bob outputs 1 if the measurement gave |0log n〉 and outputs 0 otherwise.

It is clear that this protocol only communicates log n qubits, but why does it work? Note that the
state that Bob measures is

H⊗ log n

(

1√
n

n
∑

i=1

(−1)xi+yi |i〉
)

=
1

n

n
∑

i=1

(−1)xi+yi

∑

j∈{0,1}log n

(−1)i·j |j〉

This superposition looks rather unwieldy, but consider the amplitude of the |0log n〉 basis state. It
is 1

n

∑n
i=1(−1)xi+yi , which is 1 if x = y and 0 otherwise because the promise now guarantees that

x and y differ in exactly n/2 of the bits! Hence Bob will always give the correct answer.
What about efficient classical protocols (without entanglement) for this problem? Proving

lower bounds on communication complexity often requires a very technical combinatorial analysis.
Buhrman, Cleve, and Wigderson used a deep combinatorial result of Frankl and Rödl [Frankl and Rödl(1987)]
to prove that every classical errorless protocol for this problem needs to send at least 0.007n bits.
We give the details in Appendix B.4.

This log n-qubits-vs-0.007n-bits example was the first exponentially large separation of quantum
and classical communication complexity. Notice, however, that the difference disappears if we move
to the bounded-error setting, allowing the protocol to have some small error probability. We can
use the randomized protocol for equality discussed above or even simpler: Alice can just send a few
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(i, xi) pairs to Bob, who then compares the xi’s with his yi’s. If x = y he will not see a difference,
but if x and y differ in n/2 positions, then Bob will probably detect this. Hence O(log n) classical
bits of communication suffice in the bounded-error setting, in sharp contrast to the errorless setting.

3.5 The Intersection problem

Now consider the Intersection function, which is 1 if xi = yi = 1 for at least one i. Note that this is a
decision problem of the appointment-scheduling problem mentioned in the introduction. Buhrman,
Cleve, and Wigderson [Buhrman et al.(1998)Buhrman, Cleve, and Wigderson] also presented an
efficient quantum protocol for this. Their protocol is based on Lov Grover’s famous quantum
search algorithm [Grover(1996)], which we will briefly sketch here.

Suppose there is some n-bit string z and we would like to find an index i such that zi = 1. We
cannot “look” at z directly, but we can apply the following unitary map:

Oz : |i〉 7→ (−1)zi |i〉.

Grover’s algorithm starts in a uniform superposition 1√
n

∑n
i=1 |i〉 and then repeatedly applies the

following unitary Grover iterate to the state:

G = H⊗ log nO0H
⊗ log nOz,

where H⊗ log n is the log n-qubit Hadamard transform, and O0 is the unitary that puts a ‘−’ in
front of the all-0 state. Suppose there are exactly t solutions: t indices i where zi = 1. We will not
give the analysis here (see for instance [Brassard et al.(2002)Brassard, Høyer, Mosca, and Tapp]),
but one can show that after about π

4

√

n/t Grover-iterations, most of the amplitude of the state
sits on such solutions. Measuring the state will now with high probability give us a solution. Of
course we may not know t in advance, but there is a way to find a solution with high probability
using O(

√
n) Grover-iterates even in that case.

Now what about the Intersection problem? Note that we just want to find a solution for the
string z = x ∧ y, which is the bit-wise AND of x and y, since zi = 1 whenever both xi = 1 and
yi = 1. The idea is now to let Alice run Grover’s algorithm to search for such a solution. Clearly,
she can prepare the uniform starting state herself. She can also apply H and O0 herself. The only
thing where she needs Bob’s help, is in implementing Oz. This they do as follows. Whenever Alice
want to apply Oz to a state

|φ〉 =

n
∑

i=1

αi|i〉,

she tags on her xi in an extra qubit and sends Bob the state

n
∑

i=1

αi|i〉|xi〉.

Bob applies the unitary map
|i〉|xi〉 7→ (−1)xi∧yi |i〉|xi〉

and sends back the result. Alice sets the last qubit back to |0〉 (which she can do unitarily because
she has x), and now she has the state Oz|φ〉! Thus we can simulate Oz using 2 messages of log(n)+1
qubits each. Thus Alice and Bob can run Grover’s algorithm to find an intersection, using O(

√
n)
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messages of O(log n) qubits each, for total communication of O(
√
n log n) qubits. Later Aaronson

and Ambainis [Aaronson and Ambainis(2003)] gave a more complicated protocol that uses O(
√
n)

qubits of communication.
What about lower bounds? It is a well-known result of classical communication complexity

that classical bounded-error protocols for the Intersection problem need about n bits of com-
munication [Kalyanasundaram and Schnitger(1992), Razborov(1992)]. Thus we have a quadratic
quantum-classical separation for this problem. Could the separation be even bigger than quadratic?
This question was open for quite a few years after [Buhrman et al.(1998)Buhrman, Cleve, and Wigderson]
appeared, until finally Razborov [Razborov(2003)] showed that any bounded-error quantum pro-
tocol for Intersection needs to communicate about

√
n qubits. His proof is beautiful but deep and

complicated. We sketch it in Appendix C.

3.6 Raz’s problem

Notice the contrast between the examples of the last two sections. For the Distributed Deutsch-
Jozsa problem we get an exponential quantum-classical separation, but the separation only holds
if we require the classical protocol to be errorless. On the other hand, the gap for the disjointness
function is only quadratic, but it holds even if we allow classical protocols to have some error
probability.

Raz [Raz(1999)] exhibited a function where the quantum-classical separation has both features:
the quantum protocol is exponentially better than the classical protocol, even if the latter is allowed
some error probability. Consider the following promise problem P:

Alice receives a unit vector v ∈ R
m and a decomposition of the corresponding space in

two orthogonal subspaces H(0) and H(1).
Bob receives an m×m unitary transformation U .
Promise: Uv is either “close” to H(0) or to H(1) (more precisely, letting P be the
projector on subspace H, a vector v is close to H if ‖Pv‖2 ≥ 2/3).
Question: which of the two?

As stated, this is a problem with continuous input, but it can be discretized in a natural way by
approximating each real number by O(logm) bits. Alice and Bob’s input is now n = O(m2 logm)
bits long. There is a simple yet efficient 2-round quantum protocol for this problem: Alice views
v as a logm-qubit vector and sends this to Bob. Bob applies U and sends back the result. Alice
then measures in which subspace H(i) the vector Uv lies and outputs the resulting i. This takes
only 2 logm = O(log n) qubits of communication.

The efficiency of this protocol comes from the fact that an m-dimensional unit vector can be
“compressed” or “represented” as a logm-qubit state. Similar compression is not possible with
classical bits, which suggests that any classical protocol for P will have to send the vector v more
or less literally and hence will require a lot of communication. This turns out to be true but the
proof (given in [Raz(1999)]) is surprisingly hard. It shows that any bounded-error protocol for P

needs to send at least about n1/4/ log n bits.

3.7 The Hidden Matching problem

Consider the following promise problem HM from [Bar-Yossef et al.(2004)Bar-Yossef, Jayram, and Kerenidis],
for even integer n:
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Alice receives a string x ∈ {0, 1}n.
Bob receives a perfect matching M on {1, . . . , n} (i.e., a partition into n/2 disjoint pairs
M = {(i1, j1), . . . , (in/2, jn/2)}).
Question: output a triple (i, j, xi ⊕ xj) for some (i, j) ∈M .

This communication problem is not a function, but a relation: for each input-pair x,M there
are n/2 different correct answers instead of only one: (i, j, xi ⊕ yi) is correct for each (i, j) ∈ M .
We consider one-way protocols here, where Alice sends one message to Bob and then Bob should
produce a triple (i, j, xi ⊕ xj).

We now describe a quantum protocol where Alice sends only O(log n) qubits and Bob gives one of
the correct answers with probability 1 [Bar-Yossef et al.(2004)Bar-Yossef, Jayram, and Kerenidis].
Alice sends Bob the following log n-qubit message:

1√
n

n
∑

i=1

(−1)xi |i〉.

Bob viewsM as an orthogonal decomposition of the space C
n into n/2 2-dimensional subspaces. For

instance, the projector for the subspace corresponding to (i, j) ∈ M would be Pij = |i〉〈i| + |j〉〈j|.
Bob applies this measurement on the state he received, and obtains the label of some random
(i, j) ∈M as well as the projected state

1√
2

((−1)xi |i〉 + (−1)xj |j〉) .

An appropriate measurement on this state will give Bob the bit xi ⊕ xj with certainty, and he can
output the correct answer (i, j, xi ⊕ xj).

What about classical protocols? First note that the HM problem can be solved by a short
classical message from Bob to Alice: Bob sends Alice a pair (i, j) ∈ M using 2 log n bits, which
allows Alice to compute xi ⊕ xj. But the situation is radically different if we consider classical
one-way communication from Alice to Bob only. Indeed, one can show that if Alice sends Bob pairs
(i, xi) for O(

√
n) randomly chosen i’s, then Bob probably received both points from at least one

pair in M6. This allows him to output a correct answer. On the other hand, Bar-Yossef, Jayram,
and Kerenidis [Bar-Yossef et al.(2004)Bar-Yossef, Jayram, and Kerenidis] proved that any classical
protocol solving the Hidden Matching problem, even with small error probability and involving only
one-way communication from Alice to Bob needs messages of length at least about

√
n. Thus we

have an exponential separation between classical one-way protocols and quantum one-way protocols.
Variants of the Hidden Matching problem have been used recently to obtain other quantum-

classical separations. For example, Gavinsky et al. [Gavinsky et al.(2007)Gavinsky, Kempe, Kerenidis, Raz, and
showed a log n-qubits-versus-

√
n-classical-bits separation for one-way protocols for a Boolean func-

tion derived from the Hidden Matching problem (while HM itself is a relational problem). Gavin-
sky [Gavinsky(2008a)] used another variant of HM to exhibit a relational problem where quantum
one-way protocols are exponentially more efficient than classical two-way protocols.

6This is due to an effect called the “birthday paradox” or “birthday problem”. It states that if we throw roughly√
n balls into n bins at random, then probably there will be a bin containing at least two balls.
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3.8 Inner product

In the previous sections we gave examples of quantum-classical separations. The parameters were
different, but in each case we showed that there was a quantum protocol for the problem at hand
that required far less communication than the best classical protocols. Could this always be the
case? Could quantum communication complexity be much more efficient for every communication
complexity problem? The answer to this is negative—in fact for most communication complexity
problems, quantum communication does not help much.

An important example is the inner product function (IP(x, y) = x · y =
∑n

i=1 xiyi (mod 2)).
All protocols, both classical and quantum, need to send about n bits/qubits to solve this. We will
sketch the proof of [Cleve et al.(1998)Cleve, Dam, Nielsen, and Tapp] here for the case of errorless
quantum protocols with qubit communication and without entanglement, the proof for the more
general case of entanglement is slightly more complicated. The proof uses the IP-protocol to
communicate Alice’s n-bit input to Bob, and then invokes Holevo’s theorem to conclude that many
qubits must have been communicated in order to achieve this. Suppose Alice and Bob have some
protocol P for IP. They can use this to compute the following mapping7:

|x〉|y〉 7→ |x〉(−1)x·y|y〉. (16)

Now suppose Alice starts with an arbitrary n-bit state |x〉 and Bob starts with the uniform super-
position 1√

2n

∑

y∈{0,1}n |y〉. If they apply the above mapping, the final state becomes

|x〉 1√
2n

∑

y∈{0,1}n

(−1)x·y|y〉.

If Bob applies a Hadamard transform to each of his n qubits, then he obtains the basis state |x〉,
so Alice’s n classical bits have been communicated to Bob. Holevo’s theorem now implies that the
IP-protocol must communicate n qubits (which can trivially be achieved). The same argument can,
with a minor modification, be made to work even if Alice and Bob share unlimited prior entangle-
ment, yielding a lower bound of n/2 qubits (which can trivially be achieved using dense coding).
With some more technical complication, the same idea gives an 1

2 (1−2ǫ)2n lower bound for ǫ-error
protocols [Cleve et al.(1998)Cleve, Dam, Nielsen, and Tapp]. The constant factor in this bound
was subsequently improved to the optimal 1

2 by Nayak and Salzman [Nayak and Salzman(2002)].

4 Non-locality and Communication Complexity

4.1 Converting communication complexity to non-locality

In Section 2 we introduced several simple non-locality scenarios. Then in Section 3 we introduced
communication complexity, and gave several problems for which there are large, sometimes expo-
nential, separations between the classical and quantum communication complexity. In this section

7This is an oversimplification of matters: in order to get the map of Eq. (16) one first needs to construct a new
protocol P−1 which is the reverse of the original communication protocol P . This can be done without error because
the original protocol is without error. Combining protocols P and P−1 one can obtain map (16). If protocol P uses
c qubits of communication, protocol P−1 also uses c qubits, and the protocol for obtaining state (16) uses 2c qubits.
But the crucial point is that still at most c qubits are sent from Alice to Bob, since P−1 is the reverse of P . Holevo’s
theorem lower bounds the communication from Alice to Bob, and hence we get a lower bound of n qubits on c.
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we shall put together these two approaches, and derive from the communication complexity prob-
lems new non-locality problems which are very hard, sometimes exponentially hard, to solve in
a classical model. In particular we shall present non-locality problems based on the Distributed
Deutsch-Jozsa problem and on the Hidden Matching problem. In Section 7 we shall come back to
these non-locality problems, and will discuss these newly developed tests in the context of experi-
mental errors.

In this section we shall use the following mapping which, when applicable, is very powerful.

Mapping one-way quantum communication complexity to non-locality.

Consider a communication complexity problem where the number q of qubits exchanged
in the quantum communication model with one-way communication from Alice to Bob
is less than the number c of bits required to solve the problem classically when the
parties have shared randomness; and further suppose that—due to some symmetry of
the problem—it can be solved if Alice starts with an arbitrary basis state |k〉 (the value
of k being known beforehand to both Alice and Bob) as follows: she carries out a
transformation UA(x) on this state (that depends on her input x but does not depend
on k), sends it to Bob who carries out a transformation UB(y) (that depends on his
input y but does not depend on k) and then measures in the computational basis. The
probability of finding result ℓ is thus |〈ℓ|UB(y)UA(x)|k〉|2. From the knowledge of ℓ, k,
and y, Bob can find the value of the function f(x, y).

Now consider the following process: Alice and Bob share a maximally entangled state
|ψ〉 = 2−q/2

∑2q−1
i=0 |i〉|i〉; Alice carries out a local transformation UA(x)T (where ‘T ’

means transposition in the |i〉-basis); she measures in the computational basis. Bob
carries out the transformation UB(y); he measures in the computational basis. Suppose
that Alice obtains outcome k and Bob obtains outcome ℓ. The probability of finding
these joint outcomes is P (k, ℓ|x, y) = |〈ℓ|〈k|UB(y)UA(x)T |ψ〉|2 = 2−q|〈ℓ|UB(y)UA(x)|k〉|2
(the last equality is easy to check). If Alice now sends to Bob the outcome k of her mea-
surement (which requires q bits), then Bob can compute f(x, y). Thus this constitutes
a solution of the communication complexity problem in the entanglement model with
half the communication that would be required if they had used the trivial mapping
based on teleportation. More importantly, the correlations P (k, ℓ|x, y) are non-local,
since they could not be obtained in a classical model with shared randomness without
at least c− q > 0 bits of classical communication.

4.2 Non-local version of the Distributed Deutsch-Jozsa problem

The above mapping can be applied to the Distributed Deutsch-Jozsa problem from Section 3.4.
We describe here the result of the mapping.

Non-local DJ problem: Alice and Bob receive n-bit inputs x and y that satisfy the
DJ promise: either x = y, or x and y differ in exactly n/2 positions. The task is for
Alice and Bob to provide outputs a, b ∈ {0, 1}log n such that when x = y then a = b,
and when x and y differ in exactly n/2 positions then a 6= b.

They achieve this as follows

1. Alice and Bob share the maximally entangled state
1√
n

n−1
∑

i=0

|i〉|i〉.
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2. Alice and Bob both apply locally a conditional phase to obtain:
1√
n

n−1
∑

i=0

(−1)xi(−1)yi |i〉|i〉.

3. Alice and Bob both apply a Hadamard transform:
1

n
√
n

n−1
∑

a=0

n−1
∑

b=0

(

n
∑

i=1

(−1)xi+yi+i·(a⊕b)

)

|a〉|b〉.

4. Alice and Bob measure in the computational basis.

For every a, the probability that both Alice and Bob obtain the same result a is:

∣

∣

∣

∣

∣

1

n
√
n

n−1
∑

i=0

(−1)xi+yi

∣

∣

∣

∣

∣

2

,

which is 1/n if x = y and 0 otherwise. Hence this solves the problem.
Note that if Alice then communicated the result of her measurement to Bob (using log n bits), he

could solve the Distributed Deutsch-Jozsa problem since he could then check whether k = ℓ or k 6= ℓ.
But we know that solving the Distributed Deutsch-Jozsa problem requires at least 0.007n bits. Thus
we have a non-locality problem that can be solved if Alice and Bob share log n ebits, but which
requires about 0.007n bits to be solved in a classical model with shared randomness and classical
communication. Note that this very large lower bound on the amount of classical communication
would disappear in the bounded-error setting where we allow the correlations P (a, b|x, y) to differ
slightly from the ideal correlations.

4.3 Non-local version of the Hidden Matching problem

The same mapping can be applied to the Hidden Matching problem to yield a non-locality problem.

Non-local HM problem: Assume that n = 2m, so we can index the numbers between
1 and n with m-bit strings.
Alice receives a string x ∈ {0, 1}n. Bob receives a perfect matching M on {1, . . . , n}
(i.e. a partition into n/2 disjoint pairs).
Alice must give as output some k ∈ {0, 1}m. Bob must give as output a matching
(i, j) ∈M and ℓ ∈ {0, 1}m.
Alice and Bob’s output must satisfy i · (k⊕ ℓ)) + j · (k⊕ ℓ) = xi + xj mod 2 (recall that
a · b =

∑

i aibi is the inner product between bitstrings a and b, and a⊕ b is the bitwise
XOR of a and b: the ith bit of a⊕ b is ai ⊕ bi).

Note that if at the end of the protocol, Alice sends k to Bob at a cost of m = log n classical
bits, then Bob has enough information to compute the triple (i, j, xi ⊕xj), i.e., to solve the Hidden
Matching problem as defined in Section 3.7. But we know that classical one-way communication
from Alice to Bob needs about

√
n bits to solve the Hidden Matching problem. Therefore the

correlations in the non-local HM problem themselves can only be reproduced if Alice sends Bob at
least about

√
n bits of communication (if we are restricted to one-way).

Let us show that Alice and Bob can obtain the correlations of the non-local HM problem using
local measurements on m = log n ebits. The initial state is:

1√
n

∑

i∈{0,1}m

|i〉|i〉.
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Alice adds the phases (−1)xi . Bob views M as an orthogonal decomposition of the space C
n

into n/2 2-dimensional subspaces. For instance, the projector for the subspace corresponding to
(i, j) ∈ M would be Pij = |i〉〈i| + |j〉〈j|. Bob applies this measurement on the state he received,
and obtains the label of some random (i, j) ∈M . This projects the joint state to

1√
2

((−1)xi |i〉|i〉 + (−1)xj |j〉|j〉) .

Now they both apply Hadamard transforms to each of their qubits. This gives the state

1√
2





(−1)xi

n

∑

k,ℓ∈{0,1}m

(−1)i·k+i·ℓ|k〉|ℓ〉 +
(−1)xj

n

∑

k,ℓ∈{0,1}m

(−1)j·k+j·ℓ|k〉|ℓ〉





=
1

n
√

2

∑

k,ℓ∈{0,1}m

(

(−1)xi+i·(k⊕ℓ) + (−1)xj+j·(k⊕ℓ)
)

|k〉|ℓ〉.

Both parties measure their half of the state in the computational basis. They obtain m-bit strings
k and ℓ, respectively, satisfying xi + i · (k⊕ ℓ) = xj + j · (k⊕ ℓ) (modulo 2), since the other k, ℓ-pairs
have amplitude 0. This gives: i · (k ⊕ ℓ) + j · (k ⊕ ℓ) = xi + xj (modulo 2).

5 Quantum Fingerprinting and the Simultaneous Message Passing

Model

We now describe a model, called the simultaneous message passing (SMP) model, that is nei-
ther a non-locality test nor the full-fledged communication complexity scenario, yet that is rel-
evant to both. The basic structure is illustrated in Fig. 5. Alice and Bob each receive an n-
bit input (x and y, respectively). In this scenario, they do not have any shared resources like
shared randomness or an entangled state, but they do have local randomness. They each are
required to send a single message to a third party, called the Referee. The Referee, upon re-
ceiving message mA from Alice and mB from Bob, should output the value of some (Boolean)
function f(x, y). The goal is to compute f(x, y) with a minimum amount of communication from
Alice and Bob to the Referee. This scenario was introduced by Yao [Yao(1979)] for the setting
where mA and mB are classical messages consisting of bits. We compare this classical model to
the corresponding quantum version, where mA and mB consist of qubits. We will see that for
the very natural problem of equality, where f(x, y) = 1 if and only if x = y, there is an ex-
ponential savings in communication when qubits are used instead of classical bits. Classically,
the problem of the bounded-error communication complexity of equality in the SMP model was
open for almost twenty years, until Newman and Szegedy [Newman and Szegedy(1996)] exhibited
a lower bound of about

√
n bits. This is tight, since Ambainis [Ambainis(1996)] constructed a

bounded error protocol for this problem where the messages are O(
√
n) bits long (we describe a

slightly less efficient classical protocol in Section 5.2). In contrast, Buhrman, Cleve, Watrous, and
de Wolf [Buhrman et al.(September 26, 2001)Buhrman, Cleve, Watrous, and Wolf] showed that in
the quantum setting this problem can be solved with very little communication: only O(log n)
qubits suffice.
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Figure 5: The simultaneous message passing variant of the communication complexity scenario:
Alice and Bob receive n-bit strings, x and y respectively, as input and their communication is
restricted to each sending one message to a third party, called the Referee. From these messages,
the Referee computes some function f(x, y) as the output of the protocol. There are tasks of
this form where communication in terms of quantum messages is exponentially more efficient than
communication in terms of classical messages.

5.1 Quantum fingerprints

In order to construct the efficient quantum SMP protocol for equality, we need to borrow ideas from
the efficient classical randomized communication complexity protocol for equality from Section 3.1.
Recall that in that protocol, Alice interprets her input x as a polynomial px(t) =

∑n
i=1 xit

i−1 over
some finite field F of size m (about 3n), and then she picks a random point a ∈ F and sends a and
px(a) to Bob. The pair a, px(a) is called a “fingerprint” of x, since it describes characteristics of x
that can aid in identifying it. Carrying out this fingerprinting procedure in superposition results
in a quantum fingerprint of x:

|Fx〉 =
1√
m

∑

a∈F

|a〉|px(a)〉.

Note that |Fx〉 consists of only 2 logm = 2 log n+O(1) qubits.

5.2 Classical protocol for equality

A nearly optimal8 O(
√
n log n) classical protocol for equality in the SMP model goes as follows.

Alice produces a list of k = O(
√
n) random points a1, . . . , ak in F and sends the list {(ai, px(ai))}k

i=1

to the Referee. Bob does the same with respect to y, sending {(bi, py(bi))}k
i=1 to the Referee. By

the birthday paradox (see the footnote in Section 3.7), with constant probability there exist i and
j such that both ai and bj equal the same field element d. In this case the Referee can compare
px(d) with py(d). If x = y then px = py, and hence px(d) = py(d). On the other hand, if x 6= y,
then since px and py are different polynomials of degree at most n − 1, with probability ≥ 2/3,

8Ambainis’s protocol from [Ambainis(1996)] gets rid of the log n factor.
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we have px(d) 6= py(d). The protocol for the Referee is now clear: if the lists of Alice and Bob
have a point d in common, then the Referee outputs 1 if and only if px(d) = py(d). If there is no
point in common (which happens only with small probability) or if px(d) 6= py(d), then the Referee
outputs 0.

5.3 Quantum protocol for equality

We now have everything in place to describe the quantum protocol for equality. Alice sends state
|Fx〉 to the Referee and Bob sends |Fy〉. Note that if the Referee now measures |Fx〉 in the com-
putational basis, then he will find a random point a and the value px(a), just like the classical
protocol described above. The Referee thus needs to do something smarter. The key observation
is the following about the inner products between fingerprints:

〈Fx|Fy〉 =

{

1 if x = y

≤ 1
3 if x 6= y

(17)

If x = y then clearly 〈Fx|Fy〉 = 1. If x 6= y then

〈Fx|Fy〉 =
1

m

∑

i,j∈F

〈px(i)|〈i|j〉|py(j)〉 =
1

m

∑

i∈F

〈px(i)|py(i)〉.

Since px and py are different polynomials of degree at most n − 1, they have the same value
px(i) = py(i) for at most n− 1 values of i. Hence the inner product is at most n−1

m ≤ 1
3 .

When Alice and Bob send their quantum fingerprints to the Referee, he has to determine the
inner product between the two states he receives. The following test (Figure 6), sometimes called
the SWAP-test, accomplishes this task with a small error probability.

|0〉

|φ〉

|ψ〉

measureH Hs

SWAP

Figure 6: Quantum circuit to test if |φ〉 = |ψ〉 or |〈φ|ψ〉| ≤ 1
3 .

This circuit first applies a Hadamard transform to a qubit that is initially |0〉, then SWAPs
the other two registers conditioned on the value of the first qubit being |1〉, then applies another
Hadamard transform to the first qubit and measures it. Here SWAP is the operation that swaps
the states |φ〉 and |ψ〉: |φ〉|ψ〉 7→ |ψ〉|φ〉. The Referee receives |φ〉 from Alice and |ψ〉 from Bob
and applies the test to these two states. An easy calculation reveals that the outcome of the
measurement is 1 with probability (1 − |〈φ|ψ〉|2)/2. Hence if |φ〉 = |ψ〉 then we observe a 1 with
probability 0, but if |〈φ|ψ〉| ≤ 1

3 then this probability is ≥ 4
9 . Repeating this procedure with several

individual fingerprints can make the error probability arbitrary close to 0.
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5.4 Subsequent work in the SMP model

After the quantum fingerprinting scheme showed the power of quantum communication in the
SMP model, a number of further results appeared. Yao [Yao(2003)] exhibited an efficient protocol
for testing if the inputs x and y are at some constant Hamming distance d, while Gavinsky et
al. [Gavinsky et al.(2006b)Gavinsky, Kempe, and Wolf] related quantum fingerprinting to a tech-
nique from machine learning which brings out its weaknesses. One can also study the variant of
the SMP model where Alice and Bob start with a shared entangled state, but can only send classical
messages to the Referee. Gavinsky et al. [Gavinsky et al.(2006a)Gavinsky, Kempe, Regev, and Wolf]
exhibited a problem based on the Hidden Matching problem and a quantum protocol that solves it
with O(log n) ebits and O(log n) classical bits of communication, while any quantum SMP protocol
without prior entanglement needs to send at least about (n/ log n)1/3 qubits. This shows that entan-
glement can reduce communication (even quantum communication!) exponentially, at least for rela-
tional problems in the SMP model.9 Finally, Gavinsky, Regev, and de Wolf [Gavinsky et al.(2008)Gavinsky, Regev,
showed that if Alice’s message to the referee is allowed to be quantum, while Bob’s message can
only be classical, then the quantum advantages over purely classical protocols mostly disappear.
In particular, the equality problem requires communication at least

√

n/ log n in this hybrid case.

6 Other Aspects of Quantum Non-Locality

6.1 Non-local boxes

In previous sections we studied a hierarchy of resources. In particular, we discussed and compared
the correlations P (a, b|x, y) that can be obtained using only shared randomness, by local measure-
ments on entangled states, and finally those that can be obtained if communication between the
parties is allowed. In this section we discuss an interesting set of correlations that lie between the
last two classes.

To understand these new correlations, let us note that any correlations P (a, b|x, y) obtained
in a local hidden variable model or by local measurements on an entangled state must obey the
following properties:

Positivity: P (a, b|x, y) ≥ 0; (18)

Normalization:
∑

a,b

P (a, b|x, y) = 1; (19)

No Signalling:
∑

b

P (a, b|x, y) = P (a|x) is independent of y,

∑

a

P (a, b|x, y) = P (b|y)is independent of x. (20)

The last condition expresses the fact that Bob cannot transmit any information about his input
y to Alice, and similarly Alice cannot communicate to Bob any information about her input x.
We are interested here in correlations that obey the above three conditions, but that cannot be
obtained from local measurements on entangled states.

To illustrate this idea, suppose that Alice and Bob each have some kind of device (introduced
independently in [Khalfi and Tsirelson(1985)] and in [Popescu and Rohrlich(1994)]) such that Alice

9Recently, Gavinsky [Gavinsky(2008b)] extended this to a similar separation in the more standard two-way model.
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can provide an input x ∈ {0, 1} to her device and obtain an output a ∈ {0, 1}; and Bob can provide
an input y ∈ {0, 1} to his device and obtain an output b ∈ {0, 1}, and such that the probabilities
of the outputs given the inputs obey

P (a, b|x, y) =

{

1
2 if a⊕ b = x ∧ y
0 otherwise.

(21)

Note that, much like the correlations that can be established by use of quantum entanglement,
this device is atemporal: Alice gets her output as soon as she feeds in her input, regardless of if
and when Bob feeds in his input, and vice versa. Also inspired by entanglement, this is a one-
shot device: the correlation appears only as a result of the first pair of inputs fed in by Alice
and Bob. This device obeys the conditions 1 to 3 above, so it cannot be used to signal. We
call it a non-local (NL) box (other terminology in use is Popescu-Rohrlich (PR) box, in reference
to [Popescu and Rohrlich(1994)]).

With this device Alice and Bob always obtain a ⊕ b = x ∧ y, whereas we know that for local
measurements on entangled quantum states this relation can only be satisfied with probability at
most cos2(π/8) under the uniform distribution on the inputs x and y (see Section 2.3 for a proof).
Thus this is an “imaginary” device in the sense that it cannot be realized physically without Alice
and Bob’s devices being connected by some kind of communication channel. It is, however, an
interesting resource to consider, since it is “stronger” than correlations that can be obtained from
local measurements on entangled states, but “weaker” than actual communication.

A systematic study of the properties of correlations obeying the above three conditions was
initiated in [Barrett et al.(2005b)Barrett, Linden, Massar, Pironio, Popescu, and Roberts], and it
was shown that they obey properties that one thinks of as genuinely quantum, such as monogamy
and no-cloning [Masanes et al.(2006)Masanes, Acin, and Gisin]. They also allow for secure key
distribution [Barrett et al.(2005a)Barrett, Hardy, and Kent].

Because of the apparent “reasonableness” of the non-local box, Popescu and Rohrlich raised
the question (in [Popescu and Rohrlich(1994)], and in fact well before this) why such correlations
cannot be realized in nature without communication between the parties. The most straightforward
answer is the technical proof in Section 2.3; however, one might seek a more intuitive or philosophical
explanation. One possible approach is provided by communication complexity. It was shown by
van Dam [Dam(2000), Dam(2005)], and also noted by one of the authors of the present review
(Cleve), that if Alice and Bob have an unlimited amount of non-local boxes then all communication
complexity problems become trivial:

Suppose Alice and Bob have an unlimited supply of non-local boxes, as described in
Eq. (21). Suppose Alice receives input x ∈ {0, 1}n and Bob receives input y ∈ {0, 1}n.
Then communication complexity becomes trivial, in the sense that the value of any
Boolean function f(x, y) ∈ {0, 1} can be computed with certainty with a single bit of
communication from Alice to Bob.

To prove this, consider an arbitrary function f : {0, 1}n ×{0, 1}n → {0, 1}. It can be expressed
as a boolean circuit consisting of not and ∧ (and) gates, with inputs x1, . . . , xn and y1, . . . , yn.
The idea is to represent the value of each gate of this circuit in terms of two shares, one possessed
by Alice and the other by Bob. For a bit a, its representation as shares is any (a′, a′′) where
a = a′ ⊕ a′′. Until the end of the protocol, Alice’s information about each gate will be just the first
bit of its share and Bob’s information will be the second bit. They start by constructing shares of
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the input bits: (xi, 0) for each of Alice’s input bits xi (Bob does not need to know xi to construct
his share 0); and similarly (0, yi) for each of Bob’s input bits yi. For each gate in the circuit, if
Alice and Bob collectively know the input bits as shares then they can produce the shares for the
output bit without any communication. For each not gate, Alice merely negates her share (and
Bob does nothing to his share). For each ∧ gate, assume that the shares of inputs are (a′, a′′) and
(b′, b′′). The shares of the output should be (c′, c′′) such that

c′ ⊕ c′′ = (a′ ⊕ a′′) ∧ (b′ ⊕ b′′) = (a′ ∧ b′) ⊕ (a′ ∧ b′′) ⊕ (a′′ ∧ b′) ⊕ (a′′ ∧ b′′) . (22)

Consider the four terms arising above. Since Alice possesses a′ and b′, she can easily compute
a′ ∧ b′, and similarly Bob can compute a′′ ∧ b′′. The difficult terms are a′ ∧ b′′ and a′′ ∧ b′ because
they contain bits that are spread between Alice and Bob—and this is where the non-local boxes
are used. Alice and Bob use one non-local box to obtain bits d′ and d′′ so that d′ ⊕ d′′ = a′ ∧ b′′.
They use a second non-local box to obtain e′ and e′′ so that e′ ⊕ e′′ = a′′ ∧ b′. Then Alice sets her
share to c′ = (a′ ∧ b′) ⊕ d′ ⊕ e′ and Bob sets his share to c′′ = (a′′ ∧ b′′) ⊕ d′′ ⊕ e′′. Clearly,

c′ ⊕ c′′ = (a′∧ b′)⊕ (d′⊕ e′′)⊕ (d′⊕ e′′)⊕ (a′′∧ b′′) = (a′∧ b′)⊕ (a′∧ b′′)⊕ (a′′∧ b′)⊕ (a′′∧ b′′) , (23)

as required. At the end, Alice and Bob possess shares for the value of f , and Alice sends her one-bit
share to Bob, enabling him to compute the value of f .

Is this result specific to the non-local boxes of the form Eq. (21) (in which case it could be viewed
as some kind of anomaly in the space of all possible no-signalling correlations), or does it hold for
other no-signalling correlations? In particular, does it hold for noisy correlations? It was shown
in [Brassard et al.(2006)Brassard, Buhrman, Linden, Méthot, Tapp, and Unger] that the latter is
the case, if one slightly adapts the definition of what it means for communication complexity to be
trivial:

Suppose Alice and Bob have an unlimited supply of noisy non-local boxes whose outputs

satisfy Eq. (21) with probability p ≥ 3+
√

6
6 ≈ 90.8%. Then communication complexity

becomes trivial, in the sense that there exists q > 1/2 (possibly depending on p, but on
no other parameter) such that, for any n ≥ 0, if Alice receives input x ∈ {0, 1}n and
Bob receives input y ∈ {0, 1}n, then they can find with probability at least q the value
of any Boolean function f(x, y) ∈ {0, 1} with a single bit of communication from Alice
to Bob.

Note that this result does not hold if Alice and Bob share entangled states instead of (noisy) non-
local boxes. Indeed this follows from the result of [Cleve et al.(1998)Cleve, Dam, Nielsen, and Tapp],
discussed in Section 3.8, that computing the inner product of two n-bit strings with success proba-
bility q > 1/2 requires O(n) bits of communication, even if Alice and Bob have an unlimited supply
of entangled particles.

Thus the fact that communication complexity is not trivial (i.e., that some communication
complexity problems are hard whereas others are easy) can be viewed as a partial characterization
of the non-local correlations that can be obtained by local measurements on entangled particles.
Is this a complete characterization? In particular, what is the exact noise threshold p where non-
local boxes with noise p render communication complexity trivial? The current bounds on p are:

85.4% ≈ 2+
√

2
4 ≤ p ≤ 3+

√
6

6 ≈ 90.8%. If the lower bound is the correct one, we would have
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an interesting answer to the question raised by Popescu and Rohrlich. We leave this as an open
problem.

Another related open question arising by analogy with the process of entanglement purifica-
tion [Bennett et al.(1996b)Bennett, Brassard, Popescu, Schumacher, Smolin, and Wootters], is whether
it is possible to “purify” non-local boxes? That is, given a supply of non-local boxes that work cor-
rectly with probability p, is it possible to produce, using only local operations, a non-local box with a
success probability greater than p? For a first step in this direction, see [Forster et al.(2009)Forster, Winkler, and

6.2 Bell inequalities and Tsirelson bounds

As discussed in the previous section, there are correlations, such as the non-local box, that cannot be
reproduced by local measurements on entangled particles, but that nevertheless obey the conditions
of positivity, normalisation and no-signalling Eqs. (18, 19, 20). More generally, we would like to
understand within the space of all possible correlations P = {P (a, b|x, y)} which ones can be
obtained by using only shared randomness (i.e., by local hidden variable models), which ones can
be realised by carrying out local measurements on entangled particles, and what are the ultimate
limits set by Eqs. (18, 19, 20).

Answering this question would address the question raised by Popescu and Rohrlich mentioned
above, and would give us basic insights into communication complexity. Indeed it would allow us
to understand quantitatively the differences between shared randomness, shared entanglement, and
non-local correlations, each of which can be viewed as a different resource for communication com-
plexity. For instance answering this question can have immediate implications for communication
complexity in the entanglement model, at least in the case where Alice and Bob use only one round
of communication.

Before addressing this question it is useful to understand better the geometry of non-local cor-
relations. To this end we introduce Bell expressions, that is linear combinations of the correlations

C(P) =
∑

abxy

cabxyP (a, b|x, y) (24)

where cabxy are real numbers. It is easy to show that the space of correlations that can be reproduced
using local hidden variables (i.e., using only shared randomness) is a polytope. That is, it can be
characterised by a finite number of inequalities, called Bell inequalities, of the form

C(P) ≤ Clhv . (25)

To compute the maximum value allowed by local hidden variable (LHV) models, we can restrict
ourselves to deterministic models, where a = a(x) is a function of input x, and b = b(y) is a function
of y. We then have

Clhv = max
a(x),b(y)

∑

xy

ca(x)b(y)xy .

If we consider local measurements on entangled quantum states, then we have bounds of the
form

C(P) ≤ Cqm . (26)

where
Cqm = max

∑

abxy

cabxy〈ψ|Πa(x) ⊗ Πb(y)|ψ〉
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where the maximum is taken over all states |ψ〉, and over all projective measurements {Πa(x)} (de-
pending only on x) and projective measurements {Πb(y)} (depending only on y). (By projective
measurements, we mean a set of projectors Πa = Π2

a that sum to the identity
∑

a Πa = I). Recently
it has been shown how the quantum value Clhv could be bounded by a hierarchy of semidefinite pro-
grams [Navascues et al.(2007)Navascues, Pironio, and Acin, Navascues et al.(2008)Navascues, Pironio, and Aćın,
Doherty et al.(2008)Doherty, Liang, Toner, and Wehner], although the issue of whether this hier-
archy converges remains open [Scholz and Werner(2008)].

If we impose only the no-signalling conditions, then we will have

C(P) ≤ Cno-signalling . (27)

where the right hand side is the maximum of Eq. (24) subject to Eqs. (18, 19, 20). Note that
Eqs. (18, 19, 20) define another polytope, the no-signalling polytope, and the maximum value of
C(P) will be attained at a vertex of the polytope.

Let us illustrate the above concepts by a specific kind of Bell expression, called XOR non-local
games [Cleve et al.(2004)Cleve, Høyer, Toner, and Watrous]. In this particular case, the outputs
a, b ∈ {0, 1} are bits and we wish them to come as close as possible to satisfying a condition of the
form

a⊕ b = f(x, y) (28)

for all x, y. The most celebrated example is the CHSH case, where x, y are also bits and the
condition is a⊕ b = x ∧ y, see Eq. (7).

In the case of XOR games, we take the constants cabxy in Eq. (24) to have the form:

cabxy = wxy(−1)a⊕b⊕f(x,y) = mxy(−1)a⊕b (29)

where wxy ≥ 0 can be thought of as the weight we give to the pair of inputs x, y, and mxy =
wxy(−1)f(x,y). In the particular case of the CHSH expression, we take mxy = (−1)x∧y, resulting in
the famous CHSH inequality.

When considering LHV theories, it is convenient to define new variables Ax = (−1)a(x) and
By = (−1)b(y), whereupon the maximum value of the Bell expression reachable by LHV theories is

Clhv = max
Ax,By∈{+1,−1}

∑

xy

mxyAxBy

In the case of local measurements carried out on entangled quantum states, we can write

∑

a,b

P (a, b|x, y)(−1)a(−1)b = 〈ψ|Ax ⊗By|ψ〉

where |ψ〉 is the quantum state shared by Alice and Bob, and Ax, By are Hermitian operators with
eigenvalues in {+1,−1}. We now use the following result of Tsirelson [Tsirelson(1987)]:

Suppose Alice and Bob measure observables Ax and By, both with eigenvalues in
{+1,−1}, on a pure quantum state |ψ〉 ∈ C

d ⊗ C
d, then there are real unit vectors

α(x), β(y) ∈ R
2d2

such that for all x and y, 〈ψ|Ax ⊗By|ψ〉 = α(x) · β(y).
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Thus we can re-express the maximal value of C attainable by quantum mechanics as

Cqm = max
α(x),β(y)∈Rn

∑

xy

mxyα(x) · β(y) .

If we impose only the no-signalling conditions, then it is possible to satisfy Eq. (28) for all x, y
by choosing P (ab|xy) = 1/2 if a⊕ b = f(x, y), P (ab|xy) = 0 if a⊕ b 6= f(x, y). Hence the maximum
value of the game is

Cno-signalling =
∑

xy

|mxy| .

As illustration, in the case of the CHSH inequality, the results of Section 2.2 can be re-expressed
as stating that Clhv = 2 and Cqm = 2

√
2 and Cno-signalling = 4.

Interestingly, the ratio between the LHV values and the quantum value can be bounded inde-
pendently of the number of inputs x, y and the choice of matrix mxy by Grothendiek’s constant
KG, as first noted by Tsirelson [Tsirelson(1987)]:

Cqm ≤ KGClhv .

A recent development of this line of work is the realisation that for certain Bell inequalities, a viola-
tion larger than a critical value C(P) > Cd guarantees that if the correlations are obtained by local
measurements on an entangled quantum state, then the state belongs to a Hilbert space of dimension
at least d2 (i.e., Alice and Bob’s space each have dimension at least d) [Brunner et al.(2008b)Brunner, Pironio, Acin,
Wehner et al.(2008)Wehner, Christandl, and Doherty, Briët et al.(2009)Briët, Buhrman, and Toner]).
These Bell inequalities can thus be thought of as “dimension witnesses”.

6.3 Classical simulation of quantum correlations and quantum communication

Consider a non-locality experiment in which Alice and Bob share an entangled quantum state
and carry out local measurements on this state; or consider a quantum communication protocol
in which Alice and Bob carry out several rounds of quantum communication and then carry out
measurements on the quantum states. How much classical resources are required to reproduce
these quantum experiments? The results from Sections 3 and 4 show that the classical resources
must sometimes be larger, even exponentially larger, than the quantum resources. Is this the worst
one can expect? What are good protocols to simulate the quantum experiments with classical
resources? In this section we review progress on these questions. Note that we are of course not
claiming that Nature works as in these simulations, but rather we are studying how one could
mimic Nature with these alternative resources.

6.3.1 When no communication is needed.

When states are very noisy, it may be possible to simulate local measurements on them using only
shared randomness, even though the states are entangled. Werner’s discovery of a family of states,
now known as Werner states, for which such a simulation is possible [Werner(1989)] is one of the
results of quantum information. Werner’s model was restricted to local projective measurements.
Later improvements include [Aćın et al.(2006)Aćın, Gisin, and Toner], and [Barrett(2002)] where
it was shown that simulations using only shared randomness can also exist when considering the
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more general case of local Positive Operator Valued Measures10 (POVMs), which are the most
general kind of measurement allowed by quantum mechanics.

6.3.2 One-way quantum communication.

Let us first consider the very simple scenario where Alice wants to communicate a single qubit to
Bob and Bob wants to carry out a projective measurement on the qubit. We can formalise this
simple scenario as follows:

Simulation of one-way communication of a single qubit and subsequent pro-

jective measurement. Alice receives as input a normalized vector ~x ∈ R
3, with length

‖~x‖ = 1, which describes the quantum state ρ = I
2 + ~x · ~σ

2 where ~σ = (X,Y,Z) is the
vector of non-trivial Pauli matrices from Eq. (14); Bob receives as input a normalized
vector ~y ∈ R

3, which describes his projective measurement ~y ·~σ. Bob must output a bit
b, with probabilities satisfying P (b = 0|~x~y) − P (b = 1|~x~y) = Tr(ρ~y · ~σ).

We can generalise this to the case where Alice sends n qubits to Bob, and Bob carries out a
POVM on the n qubits:

Simulation of one-way communication of n qubits. Alice receives as input the
classical description of a quantum state |ψ〉, for instance by giving her the values of
the coefficients ci of the state in a standard basis |ψ〉 =

∑

i ci|i〉. And Bob is given the
classical description of a measurement, for instance by giving him the matrix elements
of the POVM elements Ak in the standard basis. The task is for Bob to provide an
outcome k, such that the probability of outcome k occurring is P (k|ψ) = 〈ψ|Ak|ψ〉.

These are communication complexity scenarios where Alice and Bob’s inputs are infinite-
dimensional. If one allows for slight imperfections in the simulation, then one can truncate the
description of the matrix elements of |ψ〉 and Ak, and make the number of input bits finite. For
instance on Alice’s side, if |ψ〉 corresponds to the quantum state of n qubits, then one can truncate
the number of inputs to O(n2n) bits (by describing each coefficient ci with O(n) bits of precision).
If Alice then sends her truncated input to Bob, then we have, up to a small error, a classical
simulation (using O(n2n) bits) of any one-way quantum communication protocol in which n qubits
are sent from Alice to Bob. One cannot hope to do much better than this, since the HM prob-
lem of Section 3.7 exhibits an n versus 2Ω(

√
n) gap between the quantum and classical one-way

communication complexity (and this was further strengthened to two-way classical communication
complexity in [Gavinsky(2008a)]).

6.3.3 Entanglement simulation

We can also consider the case where Alice and Bob want to simulate local measurements on entan-
gled quantum particles. The simplest non-locality scenario occurs when Alice and Bob carry out
projective measurements on a single ebit:

10A Positive Operator Valued Measure (POVM) is a set {Ak} of positive-semidefinite matrices that sum to identity:
P

k Ak = I . When applied to quantum system in state ρ, the probability of obtaining measurement outcome k is
Tr(Akρ).
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Simulation of projective measurements on a single ebit. Alice and Bob each
receive as input a normalized vector in R

3, ~x, ~y with ‖~x‖ = ‖~y‖ = 1, which describe
their projective measurements ~x · ~σ, ~y · ~σ. Alice and Bob must each output a bit (a, b,
respectively) such that the correlations obey

P (a = b|~x, ~y) − P (a 6= b|~x, ~y) = −~x · ~y = 〈ψ−|~x · ~σ ⊗ ~y · ~σ|ψ−〉,

where |ψ−〉 = (|0〉|1〉−|1〉|0〉)/
√

2, and such that the marginals, P (a|~x, ~y) and P (b|~x, ~y),
are uniform (i.e., P (a = 0|~x, ~y) = P (a = 1|~x, ~y) = 1/2, etc.).

This can be generalized to the case where Alice and Bob carry out POVM’s on arbitrary
entangled states of n qubits:

Simulation of entangled states of dimension 2n. Alice and Bob share a classical
description of a pure entangled quantum state |ψ〉AB , where Alice and Bob’s systems
are each of dimension 2n. Alice and Bob receive as inputs x, y the classical (infinite-
dimensional) descriptions of the measurements they should do (for instance the inputs
could consist in the matrix elements of the POVM elements in a standard basis). Alice
and Bob must provide outputs a, b such that the joint probability P (a, b|x, y) equals the
probability of getting measurement outcomes a and b when measurements x and y are
carried out on state |ψAB〉.

If we have a simulation of one-way quantum communication, then we can transform it into
a simulation of entanglement. To see this, note that one can rewrite the joint probabilities as
P (a, b|x, y) = P (a|x)P (b|x, y, a). The simulation is then as follows: Alice chooses a according to the
probability distribution P (a|x); she then sends Bob sufficient information so that he can choose an
output b distributed according to P (b|x, y, a). It is easy to show that for this second task (producing
b distributed according to P (b|x, y, a)) it suffices for Alice to send Bob the measurement outcome,
and to describe to him the state onto which his system is projected after Alice’s measurement.11

Using this correspondence, we thus have a protocol which provides, up to a small error, a classical
simulation (using O(n2n) bits of one-way communication) of any measurement on entangled states
of n qubits.

6.3.4 Exact classical simulations

Remarkably it is also possible, at least in some cases, to perfectly simulate the quantum commu-
nication or quantum entanglement scenarios with finite classical communication. In such perfect
simulations we do not tolerate any error. Of course such exact simulations are in principle not nec-
essary if one wants to interpret the results of real experiments, as any real experiment will always
have small imperfections. But these exact simulations are interesting for at least two reasons. On
the one hand they show that perfectly simulating quantum systems is not much more costly than
approximately simulating them. On the other hand, these exact simulations have quite interesting
structures. One can hope that understanding these structures will help us understand the power
(and limitations) of quantum communication.

Exact classical simulations of quantum correlations were first independently reported in [Maudlin(1992)], [Brassard
and [Steiner(2000)]. Here we review briefly the subsequent works on this topic.

11We can assume without loss of generality that Alice’s POVM elements all have rank 1, which implies that
conditional on the measurement outcome, Bob’s state is pure.
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We first consider a weak model, where the average amount of classical communication is bounded
(but in the worse case the amount of classical communication may be infinite). This model was
first used in [Maudlin(1992), Steiner(2000)] in the context of classical simulation of a single ebit.
In [Massar et al.(2001)Massar, Bacon, Cerf, and Cleve] this approach was generalized to the sim-
ulation of communicating n qubits, or the simulation of POVM measurements on n ebits, using
O(n2n) bits of two-way classical communication on average.

A stronger and more interesting model is when the amount of classical communication is
bounded (even in the worst case). This model was introduced in [Brassard et al.(1999)Brassard, Cleve, and Tapp
The simulations were improved, and in [Toner and Bacon(2003)] it was shown that the classical
simulation of projective measurements on a single ebit could be realized with a single bit of classical
communication from Alice to Bob, and the communication of a single qubit could be simulated
with 2 bits of communication. Note that these simulations use an infinite amount of shared ran-
domness, a requirement that was shown in [Massar et al.(2001)Massar, Bacon, Cerf, and Cleve] to
be necessary when the amount of communication is bounded (in the worst case).

An even stronger model for the simulation of entanglement is for Alice and Bob to use as
resource non-local boxes, rather than classical communication. Indeed, as discussed in Section 6.1,
one bit of classical communication can be used to realize a non-local box, but a non-local box cannot
be used to communicate. It was shown in [Cerf et al.(2005)Cerf, Gisin, Massar, and Popescu] that
simulating projective measurements on a single ebit could be carried out with the use of a single non-
local box. A unified approach to protocols simulating a single ebit with one bit of communication
or with one non-local box was presented in [Degorre et al.(2005)Degorre, Laplante, and Roland].

7 Implementations

7.1 Inefficient detectors

7.1.1 The detection loophole

In this section we put a constraint on the quantum model. We will suppose that any measurement
on a quantum system gives the results predicted by quantum mechanics with probability η, and
does not give any result with probability 1 − η.

The motivation for considering this model is that most quantum communication experiments use
photons. Photons are very practical because they can be quite easily produced, manipulated, trans-
mitted over long distances, and measured. Unfortunately photons get absorbed during transmission
(in commercial optical fibers, photons have approximately 50% probability of being absorbed af-
ter travelling 15km), and single-photon detectors have limited efficiency: they will sometimes not
detect a photon even though it is present. These effects can be described by the above model.

In most experiments to date, the detector efficiency η was so low that the correlations could
be explained by a classical model using shared randomness and no communication (a local hidden
variable model). This is called the Detection Loophole [Pearle(1970)]. Thus for instance in the
CHSH experiment, the correlations can be explained by a local hidden variable model if η ≤
2/(

√
2 + 1) ≃ 0.8284. A detector efficiency better than this bound has not (yet) been achieved in

experiments involving only photons.
One solution to the above problem is technological: one should use a quantum system on which

measurements can be carried out with high efficiency. In this respect atoms or ions are particularly
interesting, because measurements on these systems can be carried out with essentially 100% effi-
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ciency. Thus experiments involving two entangled ions have been carried out in which the detection
loophole was closed [Rowe et al.(2001)Rowe, Kielpinski, Meyer, Sackett, Itano, Monroe, and Wineland,
Matsukevich et al.(2008)Matsukevich, Maunz, Moehring, Olmschenk, and Monroe]. However these
experiments have not yet allowed both the detection loophole and the locality loophole (i.e., car-
rying out both measurements at spatially separated locations) to be closed simultaneously.

Instead of (or in addition to) improved technology, another solution to this problem is to develop
new non-locality tests that demonstrate non-locality with low detector efficiency. As we shall see
in the following, the communication problems and protocols developed in the previous sections can
be used to build such tests.

7.1.2 Communication complexity and the detection loophole

Communication complexity suggests that by increasing the dimension d of the entangled system
under study, one can decrease exponentially (in d) the required efficiency of the detectors. In-
deed, it appears that in many cases the minimum number c of bits of classical communication
required to reproduce the quantum correlations is related to the minimum efficiency of the detec-
tors required for the correlations to be non-local by η ≥ 2−O(c). That there should be a relation
between c and η was first noted in [Gisin and Gisin(1999)] and further studied in [Massar(2002),
Buhrman et al.(2003)Buhrman, Høyer, Massar, and Röhrig, Buhrman et al.(2006)Buhrman, Høyer, Massar, and

To understand this relation we will compare two classical schemes:

• In the first scheme, which was discussed at length in Sections 2 and 4, the detectors have
100% efficiency, the parties have shared randomness and may exchange up to c bits of classical
communication.

• In the second scheme, the parties have shared randomness, and each party has a detector of
efficiency η. This means that each party will with probability η give an output, and with
probability 1−η produce no output. The detectors are assumed to be independent, so that the
probability that both detectors give an output is η2. In the physics terminology this would be
called a local hidden variable model with detector efficiency η. (We will also consider below
the case where one of the detectors has efficiency η, and the other always gives a result, i.e.,
is 100% efficient.)

These two schemes can be related in a number of ways. The simplest relation is:

Any classical protocol with c bits of communication can be mapped into a classical
protocol with no communication but with detector efficiency η2 = 2−c.

This mapping is very simple: Alice and Bob use shared randomness r which is uniformly distributed
over all possible conversations. Each party checks whether r is a conversation that is consistent
with their input. If it is then they give the corresponding output, if it is not then they don’t give
any output. The probability that both Alice and Bob give an output is at least 2−c.

This protocol is not perfect since the probability that the parties give an output may differ from
one party to the other, or from one input to the other. What is interesting is that in a number of
cases the converse holds: if the quantum correlations cannot be reproduced with less than c bits of
communication, then they can be reproduced without communication only if the detector efficiency
η is less than 2−Ω(c).
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A first example where this converse occurs, is when bounds on c and on the minimum detection
efficiency η can be obtained from the size of monochromatic rectangles (see Appendix B for a brief
presentation of this notion). This approach was implicit in [Massar(2002)] where it was shown that
the correlations of the distributed Deutsch-Jozsa problem could not be reproduced by a local hidden
variable model if η ≥ O(n3/4)2−0.0035n when the inputs consist of n-bit strings, and hence the parties
use a maximally entangled system of dimension n. Using the size of monochromatic rectangles was
exploited more fully in [Buhrman et al.(2003)Buhrman, Høyer, Massar, and Röhrig] in the context
of a multipartite communication complexity problem, and then extended in [Buhrman et al.(2006)Buhrman, Høy
to take into account the possibility of errors. In particular, in [Buhrman et al.(2006)Buhrman, Høyer, Massar, and
it was shown how one could obtain a lower bound c ≥ BR on the minimum amount of communi-
cation required to reproduce the correlations, where BR is a function of the size and discrepancy
of rectangles. It then followed that the correlations could be obtained by a local hidden variable
model with detectors of efficiency η only if η ≤ 2−BR/n (where n is the number of parties). If the
rectangle lower bound on c is close to tight, then this implies the relation we mentioned above
between c and η.

7.1.3 Asymmetric detection loophole

Another interesting example arises if we suppose that Alice’s detector is inefficient, but that
Bob’s detector is perfect. This situation is motivated by the experimental situation reported
in [Moehring et al.(2004)Moehring, Madsen, Blinov, and C.Monroe], where an ion is entangled with
a photon. As discussed above, the measurements on the ion can be done with 100% efficiency,
whereas those on the photon will be inefficient. The problem in which Alice’s detector is inefficient
and Bob’s detector is perfect was previously investigated from the point of view of the detection
loophole in [Cabello and Larsson(2007), Brunner et al.(2007)Brunner, Gisin, Scarani, and Simon]
for entangled systems of dimension 2.

We prove in Appendix D that the Hidden Matching problem is particularly well adapted to this
asymmetric scenario. Namely we show that

Suppose Alice and Bob try to implement the Hidden Matching problem using log n
ebits, as discussed in Section 3.7. Suppose that Alice’s detector has efficiency η whereas
Bob’s detector has 100% efficiency. Then the correlations obtained by measuring the
ebits cannot be reproduced by a classical model without communication if η ≥ 2−Ω(

√
n),

even allowing for a small error probability.

To our knowledge, this is the first time it is shown that an exponentially small detection efficiency
can be tolerated when allowing for a small error probability.

7.2 Present and future experiments

7.2.1 Experimental quantum non-locality

During the past decades there have been many experiments that studied the correlations exhibited
by measurements on entangled quantum particles. Their main aim was to test quantum mechanics
by comparing its predictions with those of hidden variable models. The short result is that the
predictions of quantum mechanics have always been verified to very high precision. However, up
to now some “loopholes” have always been left open, which allow the possibility of explaining the
data with—admittedly contrived—local hidden variable models.
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We very briefly review how experiments on quantum non-locality have been improved during
the past decades. We then discuss how the insights from communication complexity suggest new
experimental challenges. We also discuss experimental realizations of quantum communication
complexity.

After the initial experiment by Freedman and Clauser [Freedman and Clauser(1972)] on the
correlations exhibited by entangled photons, the first qualitative advance was the experiments of
Aspect that used time-varying analyzers in order to close the locality loophole. Indeed in previous
experiments the measurements where kept fixed for long periods of time while experimental results
were accumulated, then the measurements were changed and a new set of data was acquired for the
new measurement setting. In Aspect’s experiment [Aspect et al.(1982a)Aspect, Dalibard, and Roger]
the measurement settings changed periodically in time. In the later experiment of Weihs et
al. [Weihs et al.(1998)Weihs, Jennewein, Simon, Weinfurter, and Zeilinger], the measurement set-
tings were chosen at random using a quantum random number generator.

Another important advance of the experiments of Aspect et al. [Aspect et al.(1981)Aspect, Grangier, and Roger
Aspect et al.(1982b)Aspect, Grangier, and Roger] was a very precise check that the measured cor-
relations coincide with the correlations PQM(ab|xy) predicted by quantum mechanics for local
measurements on a maximally entangled state of two particles (earlier experiments were much
more imprecise).

Some other noteworthy advances:

• Non-locality experiments in which the two particles were separated by a large distance of 10
km [Tittel et al.(1998)Tittel, Brendel, Zbinden, and Gisin] and 50 km [Marcikic et al.(2004)Marcikic, de Riedmatten,

• Non-locality experiments on bipartite entangled systems of dimension 3 [Vaziri et al.(2002)Vaziri, Weihs, and
Thew et al.(2004)Thew, Aćın, Zbinden, and Gisin];

• Non-locality experiments on entangled states of three [Pan et al.(2000)Pan, Bouwmeester, Daniell, Weinfurter,
Rauschenbeutel et al.(2000)Rauschenbeutel, Nogues, Osnaghi, Bertet, Brune, Raimond, and Haroche]
and four particles [Sackett et al.(2000)Sackett, Kielpinski, King, Langer, Meyer, Myatt, Rowe, Turchette,
Zhao et al.(2003)Zhao, Yang, Chen, Zhang, Żukowski, and Pan].

In all the above experiments the detection loophole was not closed. This means that the raw
data acquired during the experiment could be explained by a local hidden variable model. It was
only by making the (physically very reasonable) assumption that the events in which the detector
gives a click are independent of the measurement settings and measurement results (known in the
physics literature as the “fair sampling assumption”) that these experiments could be assumed to
be in contradiction with local hidden variable models.

As mentioned above, there have now been two experiments involving ions in which the de-
tection loophole has been closed. In the first, the two entangled ions were separated by about
3 µm [Rowe et al.(2001)Rowe, Kielpinski, Meyer, Sackett, Itano, Monroe, and Wineland], in the
second, presented in more detail in Fig. 7, the two entangled ions were separated by about a me-
ter [Matsukevich et al.(2008)Matsukevich, Maunz, Moehring, Olmschenk, and Monroe]. In view of
these advances, closing both the locality and detection loopholes simultaneously does not seem out
of reach.

From the point of view of communication complexity, closing the detection loophole is more
important than closing the locality loophole. Indeed, if the detection loophole is not closed, it
means that the raw data can be explained by a model without communication. On the other
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Figure 7: Bell inequality with two remote atomic qubits. The left-
hand side is a schematic description of the experiment reported in
[Matsukevich et al.(2008)Matsukevich, Maunz, Moehring, Olmschenk, and Monroe] in which
the internal states of two ions separated by about one meter were entangled. Measurements
on the two ions then allowed the violation of the CHSH inequality with the detection loophole
closed. A series of laser pulses simultaneously excite both Yb+ ions in such a way that when they
deexcite, they emit a photon whose polarization is entangled with the ion. A lens is used to couple
the photons into optical fibers. The wave plate (λ/4) is used for convenience to convert circular
polarization into linear polarization. The two photons interfere on a Beam Splitter (BS) and are
detected by Photo Multiplier Tubes (PMT). Simultaneous detection of a photon by the two PMT’s
signals that the photons were in a Bell state, thereby realizing entanglement swapping: the two
ions are now entangled. The internal states of the ions are then measured, enabling a violation of
the CHSH inequality. Note that there are many inefficiencies in this experiment: only a fraction of
emitted photons are coupled into the optical fibers, and only a fraction of the photons reaching the
PMT’s are detected. But when two photons are detected, one knows with certainty that the two
ions are entangled. The right hand side is a photograph of one of the ion traps. The other trap
is similar, and located about one meter away on the same optical table. (Both figures courtesy of
S. Monroe and D. Matsukevich; left-hand side panel copyright American Physical Society).
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hand, if the detection loophole is closed, then, by sharing the entanglement, the parties have a
resource that could only be reproduced classically by communication between the parties. The
same is true in other applications of quantum non-locality: closing the detection loophole (but
not necessarily the locality loophole) allows one to increase the security of quantum key distribu-
tion [Acin et al.(2007)Acin, Brunner, Gisin, Massar, Pironio, and Scarani].

7.3 Future non-locality experiments

The progress in quantum communication complexity points the way towards new tests of quan-
tum non-locality which use not one ebit, as in the CHSH test, but many ebits. Ideas for these
new tests come from the entanglement-based Deutsch-Jozsa problem discussed in Section 4, the
entanglement-based Hidden Matching problem discussed in Section 3.7, recent work of Gavin-
sky [Gavinsky(2008b)], and also the (non-constructive) results on three-party correlations reported
in [Perez-Garcia et al.(2008)Perez-Garcia, Wolf, Palazuelos, Villanueva, and Junge]. There are at
least two motivations for such experiments. First of all they could be more robust against ex-
perimental imperfections (such as the detection loophole or errors) than non-locality tests used at
present. Second they could illustrate the efficiency of quantum mechanics over classical mechan-
ics, as experiments on a small number e of ebits could only be reproduced classically using an
exponentially large (in e) amount c of classical communication.

These non-locality experiments on a many ebits can be characterized by several parameters.
In particular these would include the number e of ebits involved, or equivalently the dimension
d = 2e of the entangled quantum system; the minimum detector efficiency η required for the
correlations to be non-local; the amount ǫ of errors that can be tolerated; and the amount c of
classical communication that would be required to reproduce the quantum correlations. In general,
for any given non-locality test, we can expect tradeoffs between η, ǫ and c.

An important point to note is that the proposals inspired by communication complexity typically
are asymptotic results that deal with the limit where the number of ebits tends towards infinity:
e → ∞. However real experiments will deal with small values of e. For instance, if we think
of the detection loophole, one should recall that this is only a problem for experiments dealing
with entangled photons. On the other hand, the Hilbert space of a single photon can be larger
than 2. One can thus effectively manipulate more than one qubit, while manipulating only a single
photon. This is potentially an interesting opportunity. Indeed it would be very interesting to
devise non-locality experiments that tolerate inefficient detectors (say η < 10%) in Hilbert spaces
of moderate dimension (say d = 10). If one could devise such a non-locality experiment, there
would be a strong incentive to realize it experimentally. Indeed whereas experiments involving
entangled atoms or ions may be the short-term solution to solving the detection loophole, such
experiments are much slower and much more expensive than experiments involving photons only.
Numerical searches for such a non-locality experiment have been undertaken, but unsuccessfully so
far [Massar et al.(2002)Massar, Pironio, Roland, and Gisin].

In summary, quantum communication complexity suggests the possibility of new non-locality
experiments on a moderate number of ebits that either are very resistant to imperfections, or require
very large amounts of classical resources to reproduce classically. Realizing such experiments will
require further progress on the theoretical and experimental side.
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7.3.1 Experimental communication complexity

The experimental situation concerning communication complexity proper is less advanced. Indeed,
in order to carry out any nontrivial experimental demonstration of communication complexity, one
needs to take into account the limited efficiency of detectors which has been such a plague for non-
locality experiments. In this respect, the first convincing communication complexity experiment to
date is that reported in [Trojek et al.(2005)Trojek, Schmid, Bourennane, Brukner, Żukowski, and Weinfurter]
in which 6 parties, materialized by waveplates along a beam on an optical table, carried out the com-
munication complexity problem proposed in [Cleve and Buhrman(1997), Buhrman et al.(1999)Buhrman, Dam,
Buhrman et al.(2001)Buhrman, Cleve, and Dam], but in the version proposed in [Galvão(2001)],
which does not use entanglement. In this experiment the limited efficiency of detectors was explic-
itly taken into account. Experiments that studied the entanglement-based version of this prob-
lem while explicitly taking into account the limited efficiency of the detectors have also been
reported [Zhang et al.(2007)Zhang, Bao, Chen, Yang, Cabello, and Pan], based on the proposal
of [Cabello and López-Tarrida(2005)].

Another protocol which has been studied experimentally is quantum fingerprinting which in the
SMP model performs exponentially better than classical protocols (see Section 5.3). The possibil-
ity of realizing such an experiment at a small scale involving one or a few photons has been discussed
in [de Beaudrap(2004), Massar(2005)], and later performed using photons [Horn et al.(2005)Horn, Babichev, Marzlin,
and in NMR [Du et al.(2006)Du, Zou, Peng, Oi, Kwek, and Ekert].

In the future we may expect further proof-of-principle experiments of quantum communica-
tion complexity involving the exchange of more qubits and larger distance between the parties.
Good candidates for such experiments are Raz’s communication complexity problem, the Hidden
Matching problem and its extensions, and quantum fingerprinting.

8 Conclusion

8.1 Open questions

Quantum communication complexity and quantum non-locality are by now mature fields. But
many questions remain open. Here we collect a few.

1. Additional natural problems in quantum communication complexity. Find ad-
ditional problems—if possible natural problems that could have potential applications—for
which quantum communication is much more efficient than classical commmunication.

2. How much entanglement is needed to get a reduction of communication: equiv-

alence of quantum communication and entanglement models of communication

complexity. In the entanglement model of communication complexity, the parties have an
unlimited supply of entanglement and use it to reduce the amount of classical communication.
How much entanglement is really needed? In classical communication complexity with shared
randomness Newman’s Theorem [Newman(1991)] states that, if we allow a small increase in
the error probability, the parties need only have O(log n) shared random bits (where n is
the size of the inputs). Does something similar hold when we replace shared randomness
by entanglement? Answering this question would essentially establish whether the quantum
communication and the entanglement models of communication complexity are equivalent
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3. Are most quantum states useful for communication complexity? It was recently
shown in [Gross et al.(2009)Gross, Flammia, and Eisert] that most n-qubit states (with re-
spect to the uniform measure) are not useful—they are typically too entangled—in the
measurement-based version of quantum computation. Are most states useful for commu-
nication complexity? For two parties the answer is yes, as they can work in the Schmidt
basis. But consider three parties sharing a random state of 3n qubits (each party having n
qubits). How useful are most states for communication complexity (asymptotically as n tends
to infinity)?

4. Find new non-local games, qualitatively different from existing ones. In particular
consider the following more specific subquestions:

• For two-party XOR games, the ratio between the classical and the quantum value of the
game is bounded by a constant. However in [Perez-Garcia et al.(2008)Perez-Garcia, Wolf, Palazuelos,
it was shown—using a non-constructive proof—that this is not the case for three-party
games. Can one exhibit an explicit example of this type?

• Find Bell inequalities involving rather small systems, say where the dimension of each
party’s Hilbert space is less than d = 10, which allow for very small detector efficiencies.

5. Non-local boxes and communication complexity. As discussed in Section 6.1, non-
local boxes are an interesting resource to consider from the point of view of communication
complexity. In this regard, two interesting questions are:

• First, what is the noise threshold below which non-local boxes make communication com-
plexity trivial (see [Brassard et al.(2006)Brassard, Buhrman, Linden, Méthot, Tapp, and Unger]
for a formulation of this problem). Is this threshold the maximum value p = (2 +

√
2)/4

attainable by local measurements on entangled quantum systems?

• Second, is it possible to amplify non-local correlations, in the sense that given a large
number of devices that will produce correlations P (ab|xy) corresponding to PR boxes
with noise p, is it possible to use the devices in such a way as to produce correlations with
a lower value of p? A first result in this direction can be found in [Forster et al.(2009)Forster, Winkler,

6. Simulation of quantum correlations and quantum communication. In this context,
some questions that come to mind are:

• Exact simulation of more than one qubit or ebit using bounded classical communication
(in the worse case) or Non-Local Boxes. Some preliminary results on this topic have been
obtained in the particular case where Alice and Bob carry out measurements with binary
outcomes [Degorre et al.(2007)Degorre, Laplante, and Roland, Regev and Toner(2007)].

• The simulation of non-maximally entangled states using non-local boxes. This appears to
be much harder than the simulation of maximally entangled states, see [Brunner et al.(2005)Brunner,
Brunner et al.(2008a)Brunner, Gisin, Popescu, and Scarani] for some first results.

• The simulation of multipartite non-local correlations.
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8.2 What have we learnt from quantum communication complexity?

Communication complexity is a task for which quantum information can beat classical informa-
tion. Such tasks are rare, and finding more potential applications of quantum information is very
important.

Unfortunately most quantum communication complexity problems are either extremely sensitive
to noise, highly contrived, or do not offer exponential gains over the best classical protocols (in
which case the advantages of quantum communication will probably be more than offset by the
lower cost and higher speed of classical communication). The most interesting proposal so far is
maybe the SMP model without shared randomness (a somewhat contrived model) where equality (a
very natural problem) can be solved exponentially more efficiently using quantum communication.
Thus there is the tantalizing possibility that some time in the future, quantum communication
complexity could be used in practical applications.

Independently of whether quantum communication complexity ever finds some real-world ap-
plications, the results obtained so far have important conceptual implications. First of all they
offer new insights into the power of quantum information, and in particular of quantum computing.
Indeed the basic aim of computer science, taken in a wide sense, is to accomplish a task by using the
minimum amount of resources. In the usual formulation, the resource that we want to minimize is
the running time of the computer. This is the most important application of quantum computing
as Shor’s algorithm suggests that a quantum computer would allow exponential speedups. But
in this context it is very difficult—if not impossible—to prove that quantum computers are more
powerful than classical computers. The advantage of quantum computation can however be proven
in simpler contexts such as the black-box model of quantum computing, where the resource that
is quantified is the number of calls to an oracle; or communication complexity where the resource
that is quantified is the amount of communication. The existence of these models where it can be
rigorously shown that quantum information offers important advantages over classical information
reinforces our confidence that quantum computers are much more powerful than classical computers
for certain tasks.

Second, the study of quantum communication complexity has led to the proposal of new tests of
quantum mechanics. Indeed from Bell onwards it was known that if one wants to replace quantum
mechanics by a classical model, this classical model would have to use faster than light signalling.
The discovery of fast quantum algorithms suggested that such a classical model would use an
exponentially large number of resources. Quantum communication complexity has now advanced
to the point where it may be possible to propose experiments in which one can prove that a classical
simulation would require exponentially more resources than are used quantum mechanically.

In summary, quantum communication complexity is now a mature field that has led to some
fundamental insights into the nature of computation and the foundations of physics.
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applied for decoding (they sum to the d-dimensional identity). The probability of successfully re-
covering x ∈ {0, 1}n from its encoding is Tr(Exρx). Therefore, we can bound the success probability
for a uniformly random x ∈ {0, 1}n by
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The first inequality follows because the density operator ρx is positive semi-definite and has trace 1,
therefore it can be unitarily diagonalized: U∗ρxU = D, where D is diagonal with diagonal entries
that are non-negative and sum to 1. Because the trace is invariant under cyclic permutations of the
matrices, we now have Tr(Exρx) = Tr(U∗ExUU

∗ρxU) = Tr(U∗ExUD) ≤ Tr(U∗ExUI) = Tr(Ex).

B Rectangles and the Lower Bound for Distributed Deutsch-Jozsa

Separations between quantum and classical communication complexity always require two things:
an efficient quantum protocol for some problem, and a lower bound on the communication of all
classical protocols solving that same problem. In this appendix we will give some tools for lower
bounding classical communication complexity, leading eventually to the lower bound on classical
protocols for the Distributed Deutsch-Jozsa problem that we mentioned in Section 3.4.

B.1 Rectangles

Consider some communication complexity problem f : X × Y → {0, 1}, where Alice starts with
an input x ∈ X and Bob starts with an input y ∈ Y . We start by introducing the crucial
combinatorial notion for classical lower bounds. A rectangle is a set R ⊆ X × Y that is of the
form R = A × B with A ⊆ X and B ⊆ Y . For example, if n = 2 and A = {00, 01}, B = {01, 10}
then R = A × B = {(00, 01), (00, 10), (01, 01), (01, 10))} is a rectangle. The following result is a
fundamental property of classical deterministic protocols.

Lemma 1. If a deterministic protocol has communication c, then there exist 2c rectangles R1, . . . , R2c

that partition X × Y , such that the protocol gives the same output ai for each (x, y) ∈ Ri.

We omit the easy proof of this lemma, which is by induction on c. For example, suppose there
is only one k-bit message m going from Alice to Bob and then Bob returns the 1-bit output. Then
the 2k+1 rectangles would be of the form Rm,a = Am × Ym,a, with m ∈ {0, 1}k and a ∈ {0, 1},
where Am is the set of x’s for which Alice sends k-bit message m, and Ym,a is the set of y’s for
which Bob returns output a when receiving message m. Note that if our protocol computes f
correctly, then the rectangles are “monochromatic”: the protocol returns the same answer f(x, y)
for all (x, y) ∈ Ri.
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As a simple application of this we prove the so-called “rank lower bound”. Consider some
communication complexity problem f : X × Y → {0, 1}. Let Mf be the |X| × |Y | matrix whose
entries are defined by Mf (x, y) = f(x, y). This is called the communication matrix of f . It can
be viewed as a 2-dimensional truth table. We use rank(f) to denote the rank of this matrix over
the field of real numbers. For example, the communication matrix for the equality function is the
2n × 2n identity matrix, which has 1s on its diagonal and 0s elsewhere. Hence rank(EQ) = 2n.

Suppose we have some c-bit deterministic protocol that computes f . We know that this parti-
tions the input space X×Y into rectangles R1, . . . , R2c . Since each 1-input (x, y) occurs in exactly
one 1-rectangle, we have

Mf =
∑

i:ai=1

Ri,

where we view Ri as a 2n × 2n matrix with 1s on its elements and 0s elsewhere. Note that Ri is a
matrix of rank 1. Hence, using rank(A+B) ≤ rank(A) + rank(B), we get

rank(Mf ) = rank

(

∑

i:ai=1

Ri

)

≤
∑

i:ai=1

rank(Ri) =
∑

i:ai=1

1 ≤ 2c.

But that means that a lower bound on the rank of Mf implies a lower bound on the communication!
In particular, it follows that for the equality problem, the communication c needs to be at least n.

B.2 Randomized protocols

In a randomized protocol, Alice and Bob may flip coins and the protocol has to output the right
value f(x, y) with probability ≥ 2/3 for all (x, y) ∈ D. We can fix these coins to obtain a deter-
ministic protocol. Suppose randomized protocol A uses c bits of communication and has success
probability 2/3 on all inputs. Let A(x, y, rA, rB) = 1 if the protocol gives the correct output f(x, y)
on input x, y using coin flips rA for Alice and rB for Bob, and A(x, y, rA, rB) = 0 otherwise. For
each x, y, a good randomized protocol satisfies

ErA,rB
[A(x, y, rA, rB)] ≥ 2/3,

where the expectation is taken over uniformly chosen strings rA and rB . Now let µ : {0, 1}n ×
{0, 1}n → [0, 1] be an input distribution. Then also

Eµ,rA,rB
[A(x, y, rA, rB)] ≥ 2/3,

where the expectation is taken over rA, rB , and x, y picked according to µ. By the averaging princi-
ple, there exists a way to fix rA and rB such that the success probability (under µ) of the resulting
deterministic protocol is at least 2/3. Accordingly, if we want to lower bound the randomized
communication complexity of a function, it suffices to find some “hard” input distribution µ, and
to show that all deterministic protocols that have error at most 1/3 under that distribution, need
a lot of communication.

The reason why the step to deterministic protocols is helpful, is that deterministic protocols
partition the input space into rectangles as we’ve seen before. Suppose we can show that all “large”
rectangles in the communication matrix have roughly as many 0s as 1s in them (weighed according
to µ). Then the protocol will make a large error on all large rectangles. Conversely, if we know
the protocol does not make a large error, most of its rectangles must have been “small”. But that
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can only be if there are many rectangles. Since the number of rectangles is 2c, the communication
c must have been large. This idea leads to the following lower bound method. The discrepancy
of rectangle R = A× B under µ is the difference between the weight of the 0s and the 1s in that
rectangle:

δµ(R) =
∣

∣µ(R ∩ f−1(1)) − µ(R ∩ f−1(0))
∣

∣

The discrepancy of f under µ is the maximum over all rectangles:

δµ(f) = max
R

δµ(R).

If f has small discrepancy, that means that all “large” rectangles are roughly balanced. Suppose a
deterministic protocol partitions the input space into rectangles R1, . . . , R2c . Suppose it has success
probability 1/2 + ǫ. The best bias (difference between success and failure probabilities) that the
protocol can achieve on rectangle Ri, is δµ(Ri), by giving the output with highest weight in that
rectangle. The success probability is

∑

i µ(Ri ∩ f−1(ai)) and the error probability is
∑

i µ(Ri ∩
f−1(1− ai)), where ai is the majority value of f on the pairs (x, y) ∈ Ri, weighted according to µ.
Hence we have

2ǫ ≤
2c
∑

i=1

µ(Ri ∩ f−1(ai)) −
2c
∑

i=1

µ(Ri ∩ f−1(1 − ai)) ≤
2c
∑

i=1

δµ(Ri) ≤ 2cδµ(f).

This is a lower bound on the communication: c ≥ log(2ǫ/δµ(f)). Accordingly, a distribution µ
where δµ(f) is small gives a lower bound on the communication of deterministic protocols for f
under µ, and then the same lower bound applies to randomized protocols.

B.3 Discrepancy of the inner product function

To illustrate the discrepancy lower bound technique, we now consider the inner product function,
defined by IP(x, y) = x·y (mod 2). We will show that its discrepancy under the uniform distribution
is very small. We analyze the 2n × 2n matrix M whose (x, y) entry is (−1)x·y. This is just the
communication matrix for IP, with 0s replaced by 1s, and 1s replaced by −1s. Lindsey’s lemma
shows that large rectangles in M are quite balanced:

Lemma 2 (Lindsey). For every rectangle R = A×B, the absolute value of the sum of the M -entries
in that rectangle is at most

√

|A| · |B| · 2n.

Proof: It is easy to see that M is symmetric and M2 = 2nI. This implies, for any vector v,

‖Mv‖2 = vTMTMv = 2nvT v = 2n‖v‖2,

where the norm is the usual Euclidean vector length. Let vA ∈ {0, 1}2n
and vB ∈ {0, 1}2n

be
the characteristic (column) vectors of the sets A and B. The sum of the M -entries in R is
∑

a∈A,b∈B Mab = vT
AMvB. We can bound this using Cauchy-Schwarz:

|vT
AMvB | ≤ ‖vA‖ · ‖MvB‖ = ‖vA‖ ·

√
2n‖vB‖ =

√

|A| · |B| · 2n.

Let µ(x, y) = 1/22n be the uniform input distribution. Note that the discrepancy of the rectangle
R under µ is exactly the difference of +1’s and −1’s in R, divided by 22n. By Lindsey’s lemma,
this is δµ(R) ≤

√

|A| · |B|/23n/2. Because |A|, |B| ≤ 2n, it follows that the discrepancy of the inner
product function under the uniform distribution is δµ(IP) ≤ 2−n/2. Hence we get a n/2 lower bound
on the randomized communication complexity of IP.
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B.4 The lower bound for the Distributed Deutsch-Jozsa problem

Recall the Distributed Deutsch-Jozsa problem from Section 3.4. Buhrman, Cleve, and Wigder-
son [Buhrman et al.(1998)Buhrman, Cleve, and Wigderson] used a combinatorial result of Frankl
and Rödl [Frankl and Rödl(1987)] to prove the following classical lower bound:

Theorem 3. Every deterministic classical protocol that solves the Distributed Deutsch-Jozsa prob-
lem, needs to communicate at least 0.007n bits.

Proof: Suppose there is a c-bit deterministic classical protocol for the problem. Each c-bit con-
versation corresponds to a rectangle R = A × B, with A,B ⊆ {0, 1}n, such that the protocol has
the same conversation and output if, and only if, (x, y) ∈ R. Since there are at most 2c possible
conversations, the protocol partitions {0, 1}n ×{0, 1}n in at most 2c different such rectangles. Now
consider all n-bit strings x with Hamming weight n/2 (i.e., n/2 ones and n/2 zeroes). There are
( n
n/2

)

≈ 2n/
√
n of those. Since every (x, x)-pair must occur in some rectangle and there are only 2c

rectangles, there is a rectangle R = A × B that contains at least 2n/(
√
n2c) different such (x, x)-

pairs. Let S = {x : |x| = n/2, (x, x) ∈ R} be the set of such x. Since R contains some (x, x)-pairs
(on which the protocol outputs 1) and the protocol has the same output for all inputs in R, R can-
not contain any 0-inputs. This implies that the Hamming distance of every pair x, y ∈ S is different
from n/2, for otherwise (x, y) would be a 0-input in R. Viewing the strings x in S as characteristic
vectors of sets, it is easy to see that the size of the intersection of x, y ∈ S is never n/4. Thus we
have a set system S of at least 2n/

√
n2c sets over an n-element universe, such that the size of the

intersection of any two sets in S is not n/4. However, by Corollary 1.2 of [Frankl and Rödl(1987)],
such a set system can have at most 1.99n elements, so we have

2n

√
n2c

≤ |S| ≤ 1.99n.

This implies c ≥ log(2n/
√
n1.99n) ≥ 0.007 n.

C Razborov’s Lower Bound for the Quantum Communication Com-

plexity of Intersection

While the previous section discussed some basic methods for lower bounding classical communi-
cation complexity, here we focus on methods to lower bound quantum communication complexity
(sometimes with prior entanglement).

C.1 The Kremer-Razborov-Yao lemma and its consequences

The following lemma is due to Razborov [Razborov(2003), Proposition 3.3] and is similar to earlier
statements by Yao [Yao(1993)] and Kremer [Kremer(1995)]. It can intuitively by viewed as a quan-
tum analogue of the rectangle-decomposition of classical protocols that we explained in Section B.1.
We skip the easy proof, which is by induction on q.

Lemma 4 (Kremer-Razborov-Yao). Let |Ψ〉 denote the (possibly entangled) starting state of a
quantum protocol that communicates q qubits of communication and has binary output. For all
inputs x of Alice and y of Bob, there exist linear operators Ah(x), Bh(y), for all h ∈ {0, 1}q−1,
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each with operator norm (i.e., largest singular value) at most 1, such that the acceptance probability
(i.e., probability of output ‘1’) of the protocol is

P (x, y) =

∥

∥

∥

∥

∥

∥

∑

h∈{0,1}q−1

(Ah(x) ⊗Bh(y))|Ψ〉

∥

∥

∥

∥

∥

∥

2

,

where the norm is the usual Euclidean vector length.

Consider the special case where the protocol starts without entanglement, so we can write
|Ψ〉 = |ΨA〉|ΨB〉. In this case we can rewrite the acceptance probabilities as

P (x, y) =

∥

∥

∥

∥

∥

∥

∑

h∈{0,1}q−1

(Ah(x) ⊗Bh(y))|ΨA〉|ΨB〉

∥

∥

∥

∥

∥

∥

2

= 〈ΨA|〈ΨB |





∑

h∈{0,1}q−1

(Ah(x) ⊗Bh(y))





∗

·





∑

h′∈{0,1}q−1

(Ah′(x) ⊗Bh′(y))



 |ΨA〉|ΨB〉

=
∑

h,h′∈{0,1}q−1

〈ΨA|Ah(x)∗Ah′(x)|ΨA〉 · 〈ΨB |Bh(y)∗Bh′(y)|ΨB〉.

Let a(x) be the 22q−2-dimensional row vector with (h, h′)-entry equal to 〈ΨA|Ah(x)∗Ah′(x)|ΨA〉,
and similarly define column vector b(y) with entries 〈ΨB |Bh(y)∗Bh′(y)|ΨB〉, then the last expression
is just the scalar product a(x)b(y). If we now define A to be the |X|×22q−2 matrix with rows a(x),
and B the 22q−2 × |Y | matrix with columns b(y), then we have proved the following lemma.

Lemma 5. Consider a quantum communication protocol (without prior entanglement) on input-set
X × Y , that communicates q qubits, with acceptance probabilities denoted by P (x, y), and P the
corresponding |X| × |Y | matrix. There exist |X| × 22q−2 matrix A and 22q−2 × |Y | matrix B, both
with entries of absolute value at most 1, such that P = AB.

Note that the rank of matrix P is at most 22q−2, since rank(AB) ≤ min(rank(A), rank(B)). This
allows us to generalize the classical rank lower bound from Section B.1 to the quantum domain. If we
have a q-qubit protocol that computes some function f : X×Y → {0, 1} with success probability 1,
then P (x, y) equals f(x, y), and the |X| × |Y | matrix P is actually the communication matrix Mf ,

whose (x, y) entry is f(x, y). Hence we obtain a lower bound q ≥ rank(P )
2 + 1 =

rank(Mf )
2 + 1

on the quantum communication of protocols with success probability 1. Similarly, one can obtain
lower bounds on the bounded-error quantum communication complexity by lower bounding the
rank needed for a matrix P that is close to the matrix of function values at each entry (since an
ǫ-error protocol satisfies |P (x, y) − f(x, y)| ≤ ǫ for all inputs).

Finally, let us note without proof that one can also use the discrepancy method (Section B.2)
to lower bound quantum communication complexity [Kremer(1995)], even for protocols with prior
entanglement [Linial and Shraibman(2007)]. Since the Inner Product function has very small dis-
crepancy (Section B.3), we thus have another way of showing a linear lower bound for it, different
from the one explained in Section 3.8.
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C.2 Translation from protocols to polynomials

The following key lemma is implicit in Razborov’s paper [Razborov(2003)]; the presentation we
give here is taken from [Klauck et al.(2007)Klauck, Špalek, and Wolf]. It allows us to translate
the average acceptance probability of a q-qubit protocol (as a function of the intersection size i
of the inputs x and y, viewed as subsets of {1, . . . , n}) to a polynomial in i of degree roughly q.
Accordingly, efficient protocols give low-degree polynomials.

Razborov’s proof relies on the following linear algebraic notions. The operator norm ‖A‖ of a
matrix A is its largest singular value σ1 (not to be confused with the Euclidean vector norm of
Lemma 4). The trace inner product—also known as Hilbert–Schmidt inner product—between A
and B is 〈A,B〉 = Tr(A∗B). The trace norm is ‖A‖tr = max{|〈A,B〉| : ‖B‖ = 1} =

∑

i σi, the sum

of all singular values of A. The Frobenius norm is ‖A‖F =
√
∑

ij |Aij |2 =
√

∑

i σ
2
i .

Lemma 6. Consider a quantum communication protocol (without prior entanglement) on n-bit
inputs x and y, that communicates q qubits, with acceptance probabilities denoted by P (x, y). Define

P (i) = E|x|=|y|=n/4,|x∧y|=i[P (x, y)],

where the expectation is taken uniformly over all x, y that each have weight n/4 and that have
intersection i. For every d ≤ n/4 there exists a degree-d polynomial q such that |P (i) − q(i)| ≤
22q−(d/4) for all i ∈ {0, . . . , n/8}.

Proof: We only consider the N =
( n
n/4

)

strings of weight n/4. Let P denote the N × N matrix
of the acceptance probabilities on these inputs. By Lemma 5, we can write P = AB, where
A is an N × 22q−2 matrix with each entry at most 1 in absolute value, and similarly for B.
Note that ‖A‖F , ‖B‖F ≤

√
N22q−2. By the Cauchy-Schwarz inequality for unitarily invariant

norms [Bhatia(1997), p. 95], we have

‖P‖tr ≤ ‖A‖F · ‖B‖F ≤ N22q−2.

Let µi denote the N ×N matrix corresponding to the uniform probability distribution on {(x, y) :
|x ∧ y| = i}. These “combinatorial matrices” have been well studied [Knuth(2003)]. Note that
〈P, µi〉 is the expected acceptance probability P (i) of the protocol under that distribution. One
can show that the different µi commute; thus they have the same eigenspaces E0, . . . , En/4 and can

be simultaneously diagonalized by some orthogonal matrix U . For t ∈ {0, . . . , n/4}, let (UPUT )t
denote the block of UPUT corresponding to Et, and let at = Tr((UPUT )t) be its trace. Then we
have

n/4
∑

t=0

|at| ≤
N
∑

j=1

∣

∣(UPUT )jj
∣

∣ ≤
∥

∥UPUT
∥

∥

tr
= ‖P‖tr ≤ N22q−2,

where the second inequality is a property of the trace norm.
Let λit be the eigenvalue of µi in eigenspace Et. Knuth [Knuth(2003)] gives an exact combina-

torial expression for λit. We will not state this explicitly here, but just note that λit is a degree-t
polynomial in i, and that |λit| ≤ 2−t/4/N for i ≤ n/8. Now consider the high-degree polynomial p
defined by

p(i) =

n/4
∑

t=0

atλit.
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This satisfies

p(i) =

n/4
∑

t=0

Tr((UPUT )t)λit = 〈UPUT , UµiU
T 〉 = 〈P, µi〉 = P (i).

Let q be the degree-d polynomial obtained by removing the high-degree parts of p:

q(i) =
d
∑

t=0

atλit.

Then P and q are close on all integers i between 0 and n/8:

|P (i) − q(i)| = |p(i) − q(i)| =

∣

∣

∣

∣

∣

∣

n/4
∑

t=d+1

atλit

∣

∣

∣

∣

∣

∣

≤ 2−d/4

N

n/4
∑

t=0

|at| ≤ 2−d/4+2q.

C.3 The quantum lower bound for Intersection

Now suppose we have a q-qubit protocol for the Intersection problem, say with error probability at
most 1/3 on every input x, y. Our goal is to show that q is at least about

√
n. Since the protocol

outputs 1 with high probability if, and only if, x and y intersect in at least one point, we know the
following about the quantity P (i) = E|x|=|y|=n/4,|x∧y|=i[P (x, y)]: P (0) ∈ [0, 1/3] and P (i) ∈ [2/3, 1]
if i ∈ {1, . . . , n}.

This P (i) is only defined on integers, but by Lemma 6 we can approximate it up to some small ad-
ditive error ǫ using a polynomial q of degree d = 8q+⌈4 log(1/ǫ)⌉. Then we know q(0) ∈ [−ǫ, 1/3+ǫ]
and q(i) ∈ [2/3−ǫ, 1+ǫ]. However, the following result of Ehlich and Zeller [Ehlich and Zeller(1964)]
and Rivlin and Cheney [Rivlin and Cheney(1966)] says that such a polynomial q must have degree
about

√
n:

Theorem 7 (Ehlich & Zeller; Rivlin & Cheney). Let p : R → R be a polynomial such that
b1 ≤ p(i) ≤ b2 for every integer 0 ≤ i ≤ N , and the derivative p′ satisfies |p′(x)| ≥ c for some real
0 ≤ x ≤ N . Then the degree of p is at least

√

cN/(c + b2 − b1).

It thus follows that the original protocol must have communicated at least about
√
n qubits. In

his paper, Razborov gives essentially tight lower bounds not just for the Intersection problem, but
for any communication problem that depends only on the size of the intersection of the inputs x
and y. This combines Lemma 6 with a polynomial degree lower bound due to Paturi [Paturi(1992)].
The lower bound proof we gave here only applies to quantum protocols that do not start with an
entangled state, but Razborov showed the same lower bound for protocols with prior entanglement,
at the expense of some more technical complication. Recently, an alternative proof was obtained
by Sherstov [Sherstov(2008)].

D Asymmetric Detection Efficiency

Here we prove the results stated in Section 7.1.3 concerning the connection between asymmetric
experiments where a single detector is inefficient, and classical protocols with perfect detectors that
use one-way communication, i.e., where all the communication takes place from Alice to Bob.
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Let us suppose that in order to reproduce the quantum correlations using one-way communica-
tion from Alice to Bob and shared randomness, cǫ′ bits of communication are required to reproduce
the correlations with error ǫ′. More precisely, the error is measured as the total variational distance
between the predictions of quantum theory PQM (ab|xy) and the output Pclass(ab|xy) of the classical
protocol:

error = max
xy

∑

ab

|Pclass(ab|xy) − PQM (ab|xy)|

Let us also suppose that there exists a protocol that uses only shared randomness (a local
hidden variable model) in which Alice’s detector has efficiency ηǫ and Bob’s detector is perfect,
and that reproduces the quantum correlations with error ǫ. More precisely the fact that Alice’s
detector has efficiency η means that P (⊥ b|xy) = η independently of b, x, y, where ⊥ corresponds to
Alice’s detector not giving a result. The error is measured as the total variational distance between
the predictions of quantum theory PQM (ab|xy) (when the detectors are 100% efficient) and the
predictions PLHV (ab|xy) of the LHV model. We divide the latter by η to take into account that
Alice’s detector gives a result with probability η:

error = max
xy

∑

ab

∣

∣

∣

∣

PLHV (ab|xy)
η

− PQM(ab|xy)
∣

∣

∣

∣

Then we have:

Theorem 8. With the above hypothesis, we have ηǫ ≤ O((− ln ǫ)2−c2ǫ).

To prove this, we use the local hidden variable model (LHV) model with detection efficiency ηǫ

to construct a classical protocol with communication. The LHV uses shared randomness r. Alice
and Bob share k independently chosen instances of the shared randomness r1, r2, . . . , rk. Alice
checks whether she should give an output for at least one value of the shared randomness. This
occurs with probability 1 − (1 − η)k. If so, she sends Bob the index j of the shared randomness rj
for which she gives an output (using log k bits of communication), and they give the corresponding
output. If there is no instance of the shared randomness for which Alice should give an output
in the LHV model, Alice gives a random output and sends Bob a random index j. This occurs
with probability (1 − η)k, and in this case Alice and Bob’s results will most likely be completely
different from those predicted by quantum mechanics. The error probability in the model with
communication is thus P (error) ≤ (1− (1−η)k)ǫ+(1−η)k ≤ ǫ+(1−η)k. Let us take k = ln ǫ

ln(1−η) ,

then the error is bounded by P (error) ≤ ǫ + (1 − η)
ln ǫ

ln(1−η) = 2ǫ. But we know that to produce
the correlations with error 2ǫ we need at least c2ǫ bits of one-way communication, hence k ≥ 2c2ǫ .
Therefore − ln(1 − η) ≤ (− ln ǫ)2−c2ǫ , which implies the result.

(Note that the above mapping does not hold when both Alice and Bob’s detectors are inefficient,
since if they try the above procedure, they will need to find a value of the shared randomness rj for
which both their detectors produce an output, i.e., solve an instance of the Intersection problem.)

Let us apply this result to the Hidden Matching problem. As mentioned in Section 3.7, this
problem can be solved using log n ebits and log n bits of classical communication from Alice to
Bob; but if classical communication from Alice to Bob is considered, then at least Ω(

√
n) bits

of communication are required, even allowing for a small error probability. This implies that the
correlations obtained by measuring the ebits can only be reproduced using at least Ω(

√
n) bits

of classical communication from Alice to Bob, even allowing for a small error probability. The
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above result then shows that these correlations remain non-local (i.e., cannot be reproduced by a
classical model without communication) if Bob’s detector has 100% efficiency and Alice’s detector
has efficiency η ≥ 2−Ω(

√
n), even allowing for a small error probability.
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